{"title":"一个普遍刚性阿贝尔张量范畴","authors":"L. Barbieri-Viale, B. Kahn","doi":"10.25537/dm.2022v27.699-717","DOIUrl":null,"url":null,"abstract":"We prove that any rigid additive symmetric monoidal category can be mapped to a rigid abelian symmetric monoidal category in a universal way. This yields a novel approach to Grothendieck’s standard conjecture D and Voevodsky’s smash nilpotence conjecture.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A universal rigid abelian tensor category\",\"authors\":\"L. Barbieri-Viale, B. Kahn\",\"doi\":\"10.25537/dm.2022v27.699-717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any rigid additive symmetric monoidal category can be mapped to a rigid abelian symmetric monoidal category in a universal way. This yields a novel approach to Grothendieck’s standard conjecture D and Voevodsky’s smash nilpotence conjecture.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.25537/dm.2022v27.699-717\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25537/dm.2022v27.699-717","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that any rigid additive symmetric monoidal category can be mapped to a rigid abelian symmetric monoidal category in a universal way. This yields a novel approach to Grothendieck’s standard conjecture D and Voevodsky’s smash nilpotence conjecture.
期刊介绍:
DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented
Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.