{"title":"一个广义的Faulhaber不等式,改进的括号覆盖,以及对差异的应用","authors":"M. Gnewuch, Hendrik Pasing, Christian Weiss","doi":"10.1090/mcom/3666","DOIUrl":null,"url":null,"abstract":"<p>We prove a generalized Faulhaber inequality to bound the sums of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j\">\n <mml:semantics>\n <mml:mi>j</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">j</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-th powers of the first <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (possibly shifted) natural numbers. With the help of this inequality we are able to improve the known bounds for bracketing numbers of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional axis-parallel boxes anchored in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (or, put differently, of lower left orthants intersected with the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional unit cube <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript d\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>d</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). We use these improved bracketing numbers to establish new bounds for the star-discrepancy of negatively dependent random point sets and its expectation. We apply our findings also to the weighted star-discrepancy.</p>","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"437 1","pages":"2873-2898"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy\",\"authors\":\"M. Gnewuch, Hendrik Pasing, Christian Weiss\",\"doi\":\"10.1090/mcom/3666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a generalized Faulhaber inequality to bound the sums of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"j\\\">\\n <mml:semantics>\\n <mml:mi>j</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">j</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-th powers of the first <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (possibly shifted) natural numbers. With the help of this inequality we are able to improve the known bounds for bracketing numbers of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-dimensional axis-parallel boxes anchored in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\">\\n <mml:semantics>\\n <mml:mn>0</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (or, put differently, of lower left orthants intersected with the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-dimensional unit cube <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 comma 1 right-bracket Superscript d\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[0,1]^d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>). We use these improved bracketing numbers to establish new bounds for the star-discrepancy of negatively dependent random point sets and its expectation. We apply our findings also to the weighted star-discrepancy.</p>\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"437 1\",\"pages\":\"2873-2898\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy
We prove a generalized Faulhaber inequality to bound the sums of the jj-th powers of the first nn (possibly shifted) natural numbers. With the help of this inequality we are able to improve the known bounds for bracketing numbers of dd-dimensional axis-parallel boxes anchored in 00 (or, put differently, of lower left orthants intersected with the dd-dimensional unit cube [0,1]d[0,1]^d). We use these improved bracketing numbers to establish new bounds for the star-discrepancy of negatively dependent random point sets and its expectation. We apply our findings also to the weighted star-discrepancy.