一个广义的Faulhaber不等式,改进的括号覆盖,以及对差异的应用

M. Gnewuch, Hendrik Pasing, Christian Weiss
{"title":"一个广义的Faulhaber不等式,改进的括号覆盖,以及对差异的应用","authors":"M. Gnewuch, Hendrik Pasing, Christian Weiss","doi":"10.1090/mcom/3666","DOIUrl":null,"url":null,"abstract":"<p>We prove a generalized Faulhaber inequality to bound the sums of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j\">\n <mml:semantics>\n <mml:mi>j</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">j</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-th powers of the first <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (possibly shifted) natural numbers. With the help of this inequality we are able to improve the known bounds for bracketing numbers of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional axis-parallel boxes anchored in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (or, put differently, of lower left orthants intersected with the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional unit cube <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript d\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>d</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). We use these improved bracketing numbers to establish new bounds for the star-discrepancy of negatively dependent random point sets and its expectation. We apply our findings also to the weighted star-discrepancy.</p>","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"437 1","pages":"2873-2898"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy\",\"authors\":\"M. Gnewuch, Hendrik Pasing, Christian Weiss\",\"doi\":\"10.1090/mcom/3666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a generalized Faulhaber inequality to bound the sums of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"j\\\">\\n <mml:semantics>\\n <mml:mi>j</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">j</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-th powers of the first <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (possibly shifted) natural numbers. With the help of this inequality we are able to improve the known bounds for bracketing numbers of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-dimensional axis-parallel boxes anchored in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\">\\n <mml:semantics>\\n <mml:mn>0</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (or, put differently, of lower left orthants intersected with the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-dimensional unit cube <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 comma 1 right-bracket Superscript d\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[0,1]^d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>). We use these improved bracketing numbers to establish new bounds for the star-discrepancy of negatively dependent random point sets and its expectation. We apply our findings also to the weighted star-discrepancy.</p>\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"437 1\",\"pages\":\"2873-2898\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了一个广义的Faulhaber不等式来约束前n n个(可能移位的)自然数的j - j次幂的和。在这个不等式的帮助下,我们能够改进锚定在0 0(或者换句话说,与d d维单位立方体[0,1]d [0,1]^d相交的左下邻边)的d d维轴平行盒的括号数的已知界限。我们使用这些改进的括号数建立了负相关随机点集的星差及其期望的新界限。我们也将我们的发现应用于加权星差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy

We prove a generalized Faulhaber inequality to bound the sums of the j j -th powers of the first n n (possibly shifted) natural numbers. With the help of this inequality we are able to improve the known bounds for bracketing numbers of d d -dimensional axis-parallel boxes anchored in 0 0 (or, put differently, of lower left orthants intersected with the d d -dimensional unit cube [ 0 , 1 ] d [0,1]^d ). We use these improved bracketing numbers to establish new bounds for the star-discrepancy of negatively dependent random point sets and its expectation. We apply our findings also to the weighted star-discrepancy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信