Jiankun Sun, Dennis J. Zhang, Haoyuan Hu, J. V. Mieghem
{"title":"预测人类自由裁量权以调整算法处方:仓库操作中的大规模现场实验","authors":"Jiankun Sun, Dennis J. Zhang, Haoyuan Hu, J. V. Mieghem","doi":"10.2139/ssrn.3355114","DOIUrl":null,"url":null,"abstract":"Conventional optimization algorithms that prescribe order packing instructions (which items to pack in which sequence in which box) focus on box volume utilization yet tend to overlook human behavioral deviations. We observe that packing workers at the warehouses of the Alibaba Group deviate from algorithmic prescriptions for 5.8% of packages, and these deviations increase packing time and reduce operational efficiency. We posit two mechanisms and demonstrate that they result in two types of deviations: (1) information deviations stem from workers having more information and in turn better solutions than the algorithm; and (2) complexity deviations result from workers’ aversion, inability, or discretion to precisely implement algorithmic prescriptions. We propose a new “human-centric bin packing algorithm” that anticipates and incorporates human deviations to reduce deviations and improve performance. It predicts when workers are more likely to switch to larger boxes using machine learning techniques and then proactively adjusts the algorithmic prescriptions of those “targeted packages.” We conducted a large-scale randomized field experiment with the Alibaba Group. Orders were randomly assigned to either the new algorithm (treatment group) or Alibaba’s original algorithm (control group). Our field experiment results show that our new algorithm lowers the rate of switching to larger boxes from 29.5% to 23.8% for targeted packages and reduces the average packing time of targeted packages by 4.5%. This idea of incorporating human deviations to improve optimization algorithms could also be generalized to other processes in logistics and operations. This paper was accepted by Charles Corbett, operations management.","PeriodicalId":13594,"journal":{"name":"Information Systems & Economics eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Predicting Human Discretion to Adjust Algorithmic Prescription: A Large-Scale Field Experiment in Warehouse Operations\",\"authors\":\"Jiankun Sun, Dennis J. Zhang, Haoyuan Hu, J. V. Mieghem\",\"doi\":\"10.2139/ssrn.3355114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional optimization algorithms that prescribe order packing instructions (which items to pack in which sequence in which box) focus on box volume utilization yet tend to overlook human behavioral deviations. We observe that packing workers at the warehouses of the Alibaba Group deviate from algorithmic prescriptions for 5.8% of packages, and these deviations increase packing time and reduce operational efficiency. We posit two mechanisms and demonstrate that they result in two types of deviations: (1) information deviations stem from workers having more information and in turn better solutions than the algorithm; and (2) complexity deviations result from workers’ aversion, inability, or discretion to precisely implement algorithmic prescriptions. We propose a new “human-centric bin packing algorithm” that anticipates and incorporates human deviations to reduce deviations and improve performance. It predicts when workers are more likely to switch to larger boxes using machine learning techniques and then proactively adjusts the algorithmic prescriptions of those “targeted packages.” We conducted a large-scale randomized field experiment with the Alibaba Group. Orders were randomly assigned to either the new algorithm (treatment group) or Alibaba’s original algorithm (control group). Our field experiment results show that our new algorithm lowers the rate of switching to larger boxes from 29.5% to 23.8% for targeted packages and reduces the average packing time of targeted packages by 4.5%. This idea of incorporating human deviations to improve optimization algorithms could also be generalized to other processes in logistics and operations. This paper was accepted by Charles Corbett, operations management.\",\"PeriodicalId\":13594,\"journal\":{\"name\":\"Information Systems & Economics eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems & Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3355114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems & Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3355114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Human Discretion to Adjust Algorithmic Prescription: A Large-Scale Field Experiment in Warehouse Operations
Conventional optimization algorithms that prescribe order packing instructions (which items to pack in which sequence in which box) focus on box volume utilization yet tend to overlook human behavioral deviations. We observe that packing workers at the warehouses of the Alibaba Group deviate from algorithmic prescriptions for 5.8% of packages, and these deviations increase packing time and reduce operational efficiency. We posit two mechanisms and demonstrate that they result in two types of deviations: (1) information deviations stem from workers having more information and in turn better solutions than the algorithm; and (2) complexity deviations result from workers’ aversion, inability, or discretion to precisely implement algorithmic prescriptions. We propose a new “human-centric bin packing algorithm” that anticipates and incorporates human deviations to reduce deviations and improve performance. It predicts when workers are more likely to switch to larger boxes using machine learning techniques and then proactively adjusts the algorithmic prescriptions of those “targeted packages.” We conducted a large-scale randomized field experiment with the Alibaba Group. Orders were randomly assigned to either the new algorithm (treatment group) or Alibaba’s original algorithm (control group). Our field experiment results show that our new algorithm lowers the rate of switching to larger boxes from 29.5% to 23.8% for targeted packages and reduces the average packing time of targeted packages by 4.5%. This idea of incorporating human deviations to improve optimization algorithms could also be generalized to other processes in logistics and operations. This paper was accepted by Charles Corbett, operations management.