T. Egawa, Hao Zhang, Takanori Kobatake, Yasuyuki Akai, Chuantong Chen, K. Suganuma
{"title":"添加纳米银粒子改善杂化银烧结连接膏的烧结性能","authors":"T. Egawa, Hao Zhang, Takanori Kobatake, Yasuyuki Akai, Chuantong Chen, K. Suganuma","doi":"10.1109/ICEPT47577.2019.245827","DOIUrl":null,"url":null,"abstract":"Silver sinter joining paste has been seen as the most promising candidate for die-attachment materials of next-generation power devices. However, there are still technique issues to be overcome before its actual utilization such as sinterability under various atmosphere and the lack of rapid sintering ability. In this research, on the basis of reported silver hybrid paste, an optimized paste composition which is composed of silver micron flakes, silver submicron particles, silver nanoparticles and ether-type solvent has been established. The newly developed paste has proper viscosity which can inhibit the leakage tendency of solvent during mask-printing. Its sintering property has been systematically evaluated and an omnipotent sinterability under various atmosphere has been observed. Moreover, the rapid sintering property drastically shorten the sintering temperature from at least 30 min to 10 min. These results suggest that the modified silver hybrid sinter joining paste can accelerate the further application of next-generation power devices owing to its obvious process advantage and excellent performance.","PeriodicalId":6676,"journal":{"name":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","volume":"9 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sinterability improvement of hybrid silver sinter joining paste by adding silver nanoparticles\",\"authors\":\"T. Egawa, Hao Zhang, Takanori Kobatake, Yasuyuki Akai, Chuantong Chen, K. Suganuma\",\"doi\":\"10.1109/ICEPT47577.2019.245827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver sinter joining paste has been seen as the most promising candidate for die-attachment materials of next-generation power devices. However, there are still technique issues to be overcome before its actual utilization such as sinterability under various atmosphere and the lack of rapid sintering ability. In this research, on the basis of reported silver hybrid paste, an optimized paste composition which is composed of silver micron flakes, silver submicron particles, silver nanoparticles and ether-type solvent has been established. The newly developed paste has proper viscosity which can inhibit the leakage tendency of solvent during mask-printing. Its sintering property has been systematically evaluated and an omnipotent sinterability under various atmosphere has been observed. Moreover, the rapid sintering property drastically shorten the sintering temperature from at least 30 min to 10 min. These results suggest that the modified silver hybrid sinter joining paste can accelerate the further application of next-generation power devices owing to its obvious process advantage and excellent performance.\",\"PeriodicalId\":6676,\"journal\":{\"name\":\"2019 20th International Conference on Electronic Packaging Technology(ICEPT)\",\"volume\":\"9 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Electronic Packaging Technology(ICEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT47577.2019.245827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT47577.2019.245827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sinterability improvement of hybrid silver sinter joining paste by adding silver nanoparticles
Silver sinter joining paste has been seen as the most promising candidate for die-attachment materials of next-generation power devices. However, there are still technique issues to be overcome before its actual utilization such as sinterability under various atmosphere and the lack of rapid sintering ability. In this research, on the basis of reported silver hybrid paste, an optimized paste composition which is composed of silver micron flakes, silver submicron particles, silver nanoparticles and ether-type solvent has been established. The newly developed paste has proper viscosity which can inhibit the leakage tendency of solvent during mask-printing. Its sintering property has been systematically evaluated and an omnipotent sinterability under various atmosphere has been observed. Moreover, the rapid sintering property drastically shorten the sintering temperature from at least 30 min to 10 min. These results suggest that the modified silver hybrid sinter joining paste can accelerate the further application of next-generation power devices owing to its obvious process advantage and excellent performance.