一种利用机器学习克服数据转换和模拟处理非理想性的癫痫检测IC

Jintao Zhang, Liechao Huang, Zhuo Wang, N. Verma
{"title":"一种利用机器学习克服数据转换和模拟处理非理想性的癫痫检测IC","authors":"Jintao Zhang, Liechao Huang, Zhuo Wang, N. Verma","doi":"10.1109/CICC.2015.7338456","DOIUrl":null,"url":null,"abstract":"This paper presents a seizure-detection system wherein the accuracy required of the analog frontend is substantially relaxed. Typically, readout of electroencephalogram (EEG) signals would dominate the energy of such a system, due to the precision (noise, linearity) requirements. The presented system performs data conversion and analog multiplication for EEG feature extraction via simple circuits to demonstrate that feature errors can be overcome by appropriate retraining of a classification model, using a machine-learning algorithm. This precludes the need to design a high-precision frontend. The prototype, in 32nm CMOS, results in features whose RMS error normalized to their ideal values is 1.16 (i.e. errors are larger than ideal values). An ideal implementation of the seizure detector exhibits sensitivity, latency, false alarms of 5/5, 2.0 sec., 8, respectively. The feature errors degrade this to 5/5, 3.6 sec., 443, causing high false alarms; but retraining of the classification model restores this to 5/5, 3.4 sec., 4.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"77 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A seizure-detection IC employing machine learning to overcome data-conversion and analog-processing non-idealities\",\"authors\":\"Jintao Zhang, Liechao Huang, Zhuo Wang, N. Verma\",\"doi\":\"10.1109/CICC.2015.7338456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a seizure-detection system wherein the accuracy required of the analog frontend is substantially relaxed. Typically, readout of electroencephalogram (EEG) signals would dominate the energy of such a system, due to the precision (noise, linearity) requirements. The presented system performs data conversion and analog multiplication for EEG feature extraction via simple circuits to demonstrate that feature errors can be overcome by appropriate retraining of a classification model, using a machine-learning algorithm. This precludes the need to design a high-precision frontend. The prototype, in 32nm CMOS, results in features whose RMS error normalized to their ideal values is 1.16 (i.e. errors are larger than ideal values). An ideal implementation of the seizure detector exhibits sensitivity, latency, false alarms of 5/5, 2.0 sec., 8, respectively. The feature errors degrade this to 5/5, 3.6 sec., 443, causing high false alarms; but retraining of the classification model restores this to 5/5, 3.4 sec., 4.\",\"PeriodicalId\":6665,\"journal\":{\"name\":\"2015 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"77 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2015.7338456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种对模拟前端精度要求大大放宽的癫痫检测系统。通常,由于精度(噪声、线性)要求,脑电图(EEG)信号的读出将主导这种系统的能量。该系统通过简单的电路对EEG特征提取进行数据转换和模拟乘法,以证明通过使用机器学习算法对分类模型进行适当的再训练可以克服特征错误。这就排除了设计高精度前端的需要。在32nm CMOS中,原型得到的特征的均方根误差归一化到理想值为1.16(即误差大于理想值)。一个理想的癫痫发作检测器的实现显示灵敏度,延迟,假警报分别为5/ 5,2.0秒,8。特征错误将其降级为5/ 5,3.6秒,443,导致高假警报;但是对分类模型的重新训练将其恢复为5/ 5,3.4 sec, 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A seizure-detection IC employing machine learning to overcome data-conversion and analog-processing non-idealities
This paper presents a seizure-detection system wherein the accuracy required of the analog frontend is substantially relaxed. Typically, readout of electroencephalogram (EEG) signals would dominate the energy of such a system, due to the precision (noise, linearity) requirements. The presented system performs data conversion and analog multiplication for EEG feature extraction via simple circuits to demonstrate that feature errors can be overcome by appropriate retraining of a classification model, using a machine-learning algorithm. This precludes the need to design a high-precision frontend. The prototype, in 32nm CMOS, results in features whose RMS error normalized to their ideal values is 1.16 (i.e. errors are larger than ideal values). An ideal implementation of the seizure detector exhibits sensitivity, latency, false alarms of 5/5, 2.0 sec., 8, respectively. The feature errors degrade this to 5/5, 3.6 sec., 443, causing high false alarms; but retraining of the classification model restores this to 5/5, 3.4 sec., 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信