群行动下的枚举:未解决的图形枚举问题,IV

Frank Harary
{"title":"群行动下的枚举:未解决的图形枚举问题,IV","authors":"Frank Harary","doi":"10.1016/S0021-9800(70)80003-5","DOIUrl":null,"url":null,"abstract":"<div><p>This review article presents three methods for solving enumeration problems which can be construed as the determination of the number of orbits of an appropriate permutation group. Such a group must be constructed in accordance with the idiosyncrasies of the configurations to be counted and the equivalence relation on them. Thus three different binary operations on permutation groups, the sum, product, and power group, are defined and the structure of each is investigated. Applications of the corresponding theorems for enumeration under group action are provided. We conclude with a table of 27 current unsolved problems in graphical enumeration.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 1","pages":"Pages 1-11"},"PeriodicalIF":0.0000,"publicationDate":"1970-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80003-5","citationCount":"4","resultStr":"{\"title\":\"Enumeration under group action: Unsolved graphical enumeration problems, IV\",\"authors\":\"Frank Harary\",\"doi\":\"10.1016/S0021-9800(70)80003-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review article presents three methods for solving enumeration problems which can be construed as the determination of the number of orbits of an appropriate permutation group. Such a group must be constructed in accordance with the idiosyncrasies of the configurations to be counted and the equivalence relation on them. Thus three different binary operations on permutation groups, the sum, product, and power group, are defined and the structure of each is investigated. Applications of the corresponding theorems for enumeration under group action are provided. We conclude with a table of 27 current unsolved problems in graphical enumeration.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"8 1\",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80003-5\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了三种解决枚举问题的方法,枚举问题可以解释为确定适当置换群的轨道数。这样的群必须根据待计数构型的特性及其上的等价关系来构造。因此,定义了置换群上的和、积和幂群上的三种二元运算,并研究了它们的结构。给出了群作用下相应的枚举定理的应用。最后,我们列出了目前图形列举中尚未解决的27个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumeration under group action: Unsolved graphical enumeration problems, IV

This review article presents three methods for solving enumeration problems which can be construed as the determination of the number of orbits of an appropriate permutation group. Such a group must be constructed in accordance with the idiosyncrasies of the configurations to be counted and the equivalence relation on them. Thus three different binary operations on permutation groups, the sum, product, and power group, are defined and the structure of each is investigated. Applications of the corresponding theorems for enumeration under group action are provided. We conclude with a table of 27 current unsolved problems in graphical enumeration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信