芦荟对纳米氧化锡合成的影响

V. Veeraganesh, A. Subramaniyan, T. Sornakumar
{"title":"芦荟对纳米氧化锡合成的影响","authors":"V. Veeraganesh, A. Subramaniyan, T. Sornakumar","doi":"10.26655/AJNANOMAT.2018.6.2","DOIUrl":null,"url":null,"abstract":"Tin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of Aloe vera on synthesis of nano Tin (iv) oxide\",\"authors\":\"V. Veeraganesh, A. Subramaniyan, T. Sornakumar\",\"doi\":\"10.26655/AJNANOMAT.2018.6.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera.\",\"PeriodicalId\":8523,\"journal\":{\"name\":\"Asian Journal of Nanoscience and Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Nanoscience and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26655/AJNANOMAT.2018.6.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Nanoscience and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26655/AJNANOMAT.2018.6.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

氧化锡(SnO2)是一种用于气敏和除氟的化合物半导体。以氯化锡为前驱体,采用溶胶-凝胶法制备了SnO2。在SnO2制备过程中加入芦荟,研究其对SnO2纳米尺寸、组成和形貌的影响。采用XRD、SEM和FTIR对制备的纳米粉体进行了表征,分析了其晶粒大小、形貌、官能团和吸收谱带。FTIR显示由于芦荟的存在导致的官能团的变化和吸光度的变化。采用Williamson Hall图进行XRD分析,证实了纳米尺寸与SEM结果一致。记录PL光谱,发现带隙和强度对芦荟引起的SnO2的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Aloe vera on synthesis of nano Tin (iv) oxide
Tin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信