{"title":"入侵过程中诱导生物环境自适应对抗的建模","authors":"A. Perevaryukha","doi":"10.18500/0869-6632-2022-30-4-436-455","DOIUrl":null,"url":null,"abstract":"Purpose is to develop a mathematical model for the analysis of a variant in the development of a population process with a non-trivially regulated confrontation between an invading species and a biotic environment. Relevance. The situation we are studying arises in invasive processes, but is a previously unexplored special variant of their development. The task of modeling is to describe the transition to a deep ν-shaped crisis after intensive growth. The model is based on examples of the adaptive dynamics of a bacterial colony and the suppression of mollusk populations, carriers of dangerous parasitic diseases, after targeted anti-epidemic introduction of their antagonists. Methods. In our work equations with a retarded argument in the range of parameter values that have a biological interpretation were studied. The model uses a logarithmic form of species regulation, taking into account the theoretically permissible capacity of the medium. In the equation we included the function of external influence with flexible threshold regulation relative to the current and previous population size. Results. It is shown that the proposed form of impact regulation leads to the formation of a stable adapted population after the crisis, which does not have a destructive impact on the habitat. With an increase in the reproductive potential of an invasive species, a deep crisis becomes critically dangerous. The form of the crisis passage depends on the reproductive potential, on the size of the initial group of individuals, and also on the time of activation of the adaptive counteraction from the environment. It is established that at a sufficient level of resistance, a non destructive equilibrium is established. Conclusion. The actual scenario of sudden depression of an actively spreading population with a large reproductive 𝑟-parameter, which is caused by the delayed activity of its natural antagonists, has been studied. The threshold form of biotic regulation is characteristic of insects, the abundance of which is regulated by competing species of parasitic hymenoptera. The variant of rapid phase change considered by us in the model is relevant as a description of one of the forms of developing the body’s immune response to the development of an acute infection with a significant delay. If the immune response is prematurely inhibited by the body itself, then the chronic focus of the disease persists. Examples of the dynamics of two real biological processes in experiments with biological suppression methods are given, which correspond to the invasion scenario obtained in the new model.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"17 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of adaptive counteraction of the induced biotic environment during the invasive process\",\"authors\":\"A. Perevaryukha\",\"doi\":\"10.18500/0869-6632-2022-30-4-436-455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose is to develop a mathematical model for the analysis of a variant in the development of a population process with a non-trivially regulated confrontation between an invading species and a biotic environment. Relevance. The situation we are studying arises in invasive processes, but is a previously unexplored special variant of their development. The task of modeling is to describe the transition to a deep ν-shaped crisis after intensive growth. The model is based on examples of the adaptive dynamics of a bacterial colony and the suppression of mollusk populations, carriers of dangerous parasitic diseases, after targeted anti-epidemic introduction of their antagonists. Methods. In our work equations with a retarded argument in the range of parameter values that have a biological interpretation were studied. The model uses a logarithmic form of species regulation, taking into account the theoretically permissible capacity of the medium. In the equation we included the function of external influence with flexible threshold regulation relative to the current and previous population size. Results. It is shown that the proposed form of impact regulation leads to the formation of a stable adapted population after the crisis, which does not have a destructive impact on the habitat. With an increase in the reproductive potential of an invasive species, a deep crisis becomes critically dangerous. The form of the crisis passage depends on the reproductive potential, on the size of the initial group of individuals, and also on the time of activation of the adaptive counteraction from the environment. It is established that at a sufficient level of resistance, a non destructive equilibrium is established. Conclusion. The actual scenario of sudden depression of an actively spreading population with a large reproductive 𝑟-parameter, which is caused by the delayed activity of its natural antagonists, has been studied. The threshold form of biotic regulation is characteristic of insects, the abundance of which is regulated by competing species of parasitic hymenoptera. The variant of rapid phase change considered by us in the model is relevant as a description of one of the forms of developing the body’s immune response to the development of an acute infection with a significant delay. If the immune response is prematurely inhibited by the body itself, then the chronic focus of the disease persists. Examples of the dynamics of two real biological processes in experiments with biological suppression methods are given, which correspond to the invasion scenario obtained in the new model.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-2022-30-4-436-455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-4-436-455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling of adaptive counteraction of the induced biotic environment during the invasive process
Purpose is to develop a mathematical model for the analysis of a variant in the development of a population process with a non-trivially regulated confrontation between an invading species and a biotic environment. Relevance. The situation we are studying arises in invasive processes, but is a previously unexplored special variant of their development. The task of modeling is to describe the transition to a deep ν-shaped crisis after intensive growth. The model is based on examples of the adaptive dynamics of a bacterial colony and the suppression of mollusk populations, carriers of dangerous parasitic diseases, after targeted anti-epidemic introduction of their antagonists. Methods. In our work equations with a retarded argument in the range of parameter values that have a biological interpretation were studied. The model uses a logarithmic form of species regulation, taking into account the theoretically permissible capacity of the medium. In the equation we included the function of external influence with flexible threshold regulation relative to the current and previous population size. Results. It is shown that the proposed form of impact regulation leads to the formation of a stable adapted population after the crisis, which does not have a destructive impact on the habitat. With an increase in the reproductive potential of an invasive species, a deep crisis becomes critically dangerous. The form of the crisis passage depends on the reproductive potential, on the size of the initial group of individuals, and also on the time of activation of the adaptive counteraction from the environment. It is established that at a sufficient level of resistance, a non destructive equilibrium is established. Conclusion. The actual scenario of sudden depression of an actively spreading population with a large reproductive 𝑟-parameter, which is caused by the delayed activity of its natural antagonists, has been studied. The threshold form of biotic regulation is characteristic of insects, the abundance of which is regulated by competing species of parasitic hymenoptera. The variant of rapid phase change considered by us in the model is relevant as a description of one of the forms of developing the body’s immune response to the development of an acute infection with a significant delay. If the immune response is prematurely inhibited by the body itself, then the chronic focus of the disease persists. Examples of the dynamics of two real biological processes in experiments with biological suppression methods are given, which correspond to the invasion scenario obtained in the new model.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.