{"title":"在候选人选择中使用光纤遥测连续油管的新工作流程","authors":"A. El-Attar","doi":"10.35248/2157-7463.19.10.398","DOIUrl":null,"url":null,"abstract":"Formation damage is an undesirable operational and economic problem that can occur throughout the lifecycle of oil and gas wells due to several reasons such as using incompatible fluids during workover operations, fines migration, clay swelling, emulsions formation, and scale and organic depositions. Also, newly drilled wells sometimes do not produce optimally due to the damages caused by the drilling fluids. Therefore, addressing formation damage issues to ensure optimum recovery of hydrocarbons needs more efforts on identifying the damage mechanism and quantifying the skin factor. Skin factor is a dimensionless number that reflects the production impairment due to near-wellbore reduction of permeability. So, if this number is zero it means the well is intact, however; if this number is positive that means the well is damaged. The workflow presented in this paper focuses on the use of fiber-optic telemetry-enabled coiled tubing (FOTECT) for production enhancement in real-time by quantifying skin factor, estimating the flow potential and determining the candidate wells for matrix stimulation. This new technology can deliver pressure data in real-time during a typical unloading operation that could be further used in well test analysis for estimating key reservoir properties such as skin (S), flow capacity (Kh), drainage area (A) and initial reservoir pressure (Pi). The new technology reduces the operational time required for well test analysis compared with conventional downhole recording systems (DHR) by two-fold while enabling the performance of an acid treatment in the same run. Moreover, in this study a workflow and user-interface software using java language were developed to execute the workflow through a two-step streamlined process: 1. Assessing the well damage through quantifying the skin value from pressure transient analysis (PTA) utilizing the downhole pressure data acquired from coiled tubing in real-time. 2. Inflow performance relationship (IPR) construction of the well using Vogel’s correlation and productivity index equation under the current condition and under ideal condition (Zero skin) to assess the feasibility of a stimulation treatment. The paper will present the application of this technique on simulated field data to show how FOTECT could be used to diagnose and treat the well in the same run. The output obtained from the developed software will be compared against the output of an industry popular well-test suite (Sapphire). Also, a case study in which this technology was used for pressure transient analysis for artificial lift design will be presented to show the applicability of this novel approach and to prove it can yield matching results with conventional techniques in a more efficient way. From the simulated data the developed software estimated the skin factor to be nine from both build-up and draw down analysis, which was later matched by Sapphire commercial Suite; moreover, it was shown that the current production rate of 792-BPOD can be increased to 1722-BOPD post a successful stimulation treatment.","PeriodicalId":16699,"journal":{"name":"Journal of Petroleum & Environmental Biotechnology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Workflow for Using Fiber-Optic Telemetry-Enabled Coiled Tubing in Candidate Selection\",\"authors\":\"A. El-Attar\",\"doi\":\"10.35248/2157-7463.19.10.398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formation damage is an undesirable operational and economic problem that can occur throughout the lifecycle of oil and gas wells due to several reasons such as using incompatible fluids during workover operations, fines migration, clay swelling, emulsions formation, and scale and organic depositions. Also, newly drilled wells sometimes do not produce optimally due to the damages caused by the drilling fluids. Therefore, addressing formation damage issues to ensure optimum recovery of hydrocarbons needs more efforts on identifying the damage mechanism and quantifying the skin factor. Skin factor is a dimensionless number that reflects the production impairment due to near-wellbore reduction of permeability. So, if this number is zero it means the well is intact, however; if this number is positive that means the well is damaged. The workflow presented in this paper focuses on the use of fiber-optic telemetry-enabled coiled tubing (FOTECT) for production enhancement in real-time by quantifying skin factor, estimating the flow potential and determining the candidate wells for matrix stimulation. This new technology can deliver pressure data in real-time during a typical unloading operation that could be further used in well test analysis for estimating key reservoir properties such as skin (S), flow capacity (Kh), drainage area (A) and initial reservoir pressure (Pi). The new technology reduces the operational time required for well test analysis compared with conventional downhole recording systems (DHR) by two-fold while enabling the performance of an acid treatment in the same run. Moreover, in this study a workflow and user-interface software using java language were developed to execute the workflow through a two-step streamlined process: 1. Assessing the well damage through quantifying the skin value from pressure transient analysis (PTA) utilizing the downhole pressure data acquired from coiled tubing in real-time. 2. Inflow performance relationship (IPR) construction of the well using Vogel’s correlation and productivity index equation under the current condition and under ideal condition (Zero skin) to assess the feasibility of a stimulation treatment. The paper will present the application of this technique on simulated field data to show how FOTECT could be used to diagnose and treat the well in the same run. The output obtained from the developed software will be compared against the output of an industry popular well-test suite (Sapphire). Also, a case study in which this technology was used for pressure transient analysis for artificial lift design will be presented to show the applicability of this novel approach and to prove it can yield matching results with conventional techniques in a more efficient way. From the simulated data the developed software estimated the skin factor to be nine from both build-up and draw down analysis, which was later matched by Sapphire commercial Suite; moreover, it was shown that the current production rate of 792-BPOD can be increased to 1722-BOPD post a successful stimulation treatment.\",\"PeriodicalId\":16699,\"journal\":{\"name\":\"Journal of Petroleum & Environmental Biotechnology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum & Environmental Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35248/2157-7463.19.10.398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum & Environmental Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/2157-7463.19.10.398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Workflow for Using Fiber-Optic Telemetry-Enabled Coiled Tubing in Candidate Selection
Formation damage is an undesirable operational and economic problem that can occur throughout the lifecycle of oil and gas wells due to several reasons such as using incompatible fluids during workover operations, fines migration, clay swelling, emulsions formation, and scale and organic depositions. Also, newly drilled wells sometimes do not produce optimally due to the damages caused by the drilling fluids. Therefore, addressing formation damage issues to ensure optimum recovery of hydrocarbons needs more efforts on identifying the damage mechanism and quantifying the skin factor. Skin factor is a dimensionless number that reflects the production impairment due to near-wellbore reduction of permeability. So, if this number is zero it means the well is intact, however; if this number is positive that means the well is damaged. The workflow presented in this paper focuses on the use of fiber-optic telemetry-enabled coiled tubing (FOTECT) for production enhancement in real-time by quantifying skin factor, estimating the flow potential and determining the candidate wells for matrix stimulation. This new technology can deliver pressure data in real-time during a typical unloading operation that could be further used in well test analysis for estimating key reservoir properties such as skin (S), flow capacity (Kh), drainage area (A) and initial reservoir pressure (Pi). The new technology reduces the operational time required for well test analysis compared with conventional downhole recording systems (DHR) by two-fold while enabling the performance of an acid treatment in the same run. Moreover, in this study a workflow and user-interface software using java language were developed to execute the workflow through a two-step streamlined process: 1. Assessing the well damage through quantifying the skin value from pressure transient analysis (PTA) utilizing the downhole pressure data acquired from coiled tubing in real-time. 2. Inflow performance relationship (IPR) construction of the well using Vogel’s correlation and productivity index equation under the current condition and under ideal condition (Zero skin) to assess the feasibility of a stimulation treatment. The paper will present the application of this technique on simulated field data to show how FOTECT could be used to diagnose and treat the well in the same run. The output obtained from the developed software will be compared against the output of an industry popular well-test suite (Sapphire). Also, a case study in which this technology was used for pressure transient analysis for artificial lift design will be presented to show the applicability of this novel approach and to prove it can yield matching results with conventional techniques in a more efficient way. From the simulated data the developed software estimated the skin factor to be nine from both build-up and draw down analysis, which was later matched by Sapphire commercial Suite; moreover, it was shown that the current production rate of 792-BPOD can be increased to 1722-BOPD post a successful stimulation treatment.