可整除凸域上的余维-1单形

IF 2 1区 数学
Martin D. Bobb
{"title":"可整除凸域上的余维-1单形","authors":"Martin D. Bobb","doi":"10.2140/gt.2021.25.3725","DOIUrl":null,"url":null,"abstract":"Properly embedded simplices in a convex divisible domain $\\Omega \\subset \\mathbb{R} \\textrm{P}^d$ behave somewhat like flats in Riemannian manifolds, so we call them flats. We show that the set of codimension-$1$ flats has image which is a finite collection of disjoint virtual $(d-1)$-tori in the compact quotient manifold. If this collection of virtual tori is non-empty, then the components of its complement are cusped convex projective manifolds with type $d$ cusps.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Codimension-1 simplices in divisible convex\\ndomains\",\"authors\":\"Martin D. Bobb\",\"doi\":\"10.2140/gt.2021.25.3725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Properly embedded simplices in a convex divisible domain $\\\\Omega \\\\subset \\\\mathbb{R} \\\\textrm{P}^d$ behave somewhat like flats in Riemannian manifolds, so we call them flats. We show that the set of codimension-$1$ flats has image which is a finite collection of disjoint virtual $(d-1)$-tori in the compact quotient manifold. If this collection of virtual tori is non-empty, then the components of its complement are cusped convex projective manifolds with type $d$ cusps.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.3725\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.3725","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在凸可整除域$\ \Omega \子集$ mathbb{R} \textrm{P}^d$中适当嵌入的简单体表现得有点像黎曼流形中的平面,所以我们称它们为平面。证明了紧商流形上的余维-$1$平面集合具有象,该象是不相交的虚$(d-1)$-环面的有限集合。如果这个虚环面集合是非空的,那么它的补集的分量就是顶点为d的凸投影流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codimension-1 simplices in divisible convex domains
Properly embedded simplices in a convex divisible domain $\Omega \subset \mathbb{R} \textrm{P}^d$ behave somewhat like flats in Riemannian manifolds, so we call them flats. We show that the set of codimension-$1$ flats has image which is a finite collection of disjoint virtual $(d-1)$-tori in the compact quotient manifold. If this collection of virtual tori is non-empty, then the components of its complement are cusped convex projective manifolds with type $d$ cusps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信