Khairul Baqir Alkhair, O. H. Hassan, S. Mohamed, Yap Kian Chung Andrew, Zulkifli Ab. Rahman, T. Kudin, A. Ali, M. Yahya, Muhammad Haikal Zainal
{"title":"三种不同电极对微生物燃料电池性能的比较研究","authors":"Khairul Baqir Alkhair, O. H. Hassan, S. Mohamed, Yap Kian Chung Andrew, Zulkifli Ab. Rahman, T. Kudin, A. Ali, M. Yahya, Muhammad Haikal Zainal","doi":"10.17576/mjas-2018-2203-18","DOIUrl":null,"url":null,"abstract":"Microbial Fuel Cell (MFC) is an alternative method of renewable energy which have gained considerable attention due to its capability to generate electricity and treat wastewater such as palm oil mill effluent (POME). MFC’s mechanism on its electrochemical process is still lacking and further studies is needed. The objectives of this study are (1) to determine the compatibility of MFC device in generating electricity by using three different electrodes and (2) to study the effect of sodium hydroxide (NaOH) to MFC’s performance. In this work, the MFC device is associated with 3 different electrodes which are carbon brush (CB), carbon cloth (CC) and pre-treated carbon cloth (PCC) on its anode chamber. There are 2 types of substrates used in this experiment which are POME with the presence of bacteria (POME+) and POME without bacteria in it (POME-). The experiment was carried out for 120 hours and its power generation was monitored. The experimental result shows that PCC with POME+ yielded the highest power density of 49.88 mW/m at 27 hours as compared to the others. In addition, CC with POMEhas the highest chemical oxygen demand (COD) deduction which indicates the POME treatment was deducted by 45.93%. NaOH affected the performance of MFC but is insignificant to influence the redox reaction of MFC.","PeriodicalId":18025,"journal":{"name":"Malaysian Journal of Analytical Science","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMPARATIVE STUDY OF MICROBIAL FUEL CELL’S PERFORMANCE USING THREE DIFFERENT ELECTRODES\",\"authors\":\"Khairul Baqir Alkhair, O. H. Hassan, S. Mohamed, Yap Kian Chung Andrew, Zulkifli Ab. Rahman, T. Kudin, A. Ali, M. Yahya, Muhammad Haikal Zainal\",\"doi\":\"10.17576/mjas-2018-2203-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial Fuel Cell (MFC) is an alternative method of renewable energy which have gained considerable attention due to its capability to generate electricity and treat wastewater such as palm oil mill effluent (POME). MFC’s mechanism on its electrochemical process is still lacking and further studies is needed. The objectives of this study are (1) to determine the compatibility of MFC device in generating electricity by using three different electrodes and (2) to study the effect of sodium hydroxide (NaOH) to MFC’s performance. In this work, the MFC device is associated with 3 different electrodes which are carbon brush (CB), carbon cloth (CC) and pre-treated carbon cloth (PCC) on its anode chamber. There are 2 types of substrates used in this experiment which are POME with the presence of bacteria (POME+) and POME without bacteria in it (POME-). The experiment was carried out for 120 hours and its power generation was monitored. The experimental result shows that PCC with POME+ yielded the highest power density of 49.88 mW/m at 27 hours as compared to the others. In addition, CC with POMEhas the highest chemical oxygen demand (COD) deduction which indicates the POME treatment was deducted by 45.93%. NaOH affected the performance of MFC but is insignificant to influence the redox reaction of MFC.\",\"PeriodicalId\":18025,\"journal\":{\"name\":\"Malaysian Journal of Analytical Science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Analytical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17576/mjas-2018-2203-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Analytical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/mjas-2018-2203-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COMPARATIVE STUDY OF MICROBIAL FUEL CELL’S PERFORMANCE USING THREE DIFFERENT ELECTRODES
Microbial Fuel Cell (MFC) is an alternative method of renewable energy which have gained considerable attention due to its capability to generate electricity and treat wastewater such as palm oil mill effluent (POME). MFC’s mechanism on its electrochemical process is still lacking and further studies is needed. The objectives of this study are (1) to determine the compatibility of MFC device in generating electricity by using three different electrodes and (2) to study the effect of sodium hydroxide (NaOH) to MFC’s performance. In this work, the MFC device is associated with 3 different electrodes which are carbon brush (CB), carbon cloth (CC) and pre-treated carbon cloth (PCC) on its anode chamber. There are 2 types of substrates used in this experiment which are POME with the presence of bacteria (POME+) and POME without bacteria in it (POME-). The experiment was carried out for 120 hours and its power generation was monitored. The experimental result shows that PCC with POME+ yielded the highest power density of 49.88 mW/m at 27 hours as compared to the others. In addition, CC with POMEhas the highest chemical oxygen demand (COD) deduction which indicates the POME treatment was deducted by 45.93%. NaOH affected the performance of MFC but is insignificant to influence the redox reaction of MFC.