部分和收敛子序列的Franklin级数的唯一性

Pub Date : 2023-01-01 DOI:10.4213/sm9741e
G. Gevorkyan
{"title":"部分和收敛子序列的Franklin级数的唯一性","authors":"G. Gevorkyan","doi":"10.4213/sm9741e","DOIUrl":null,"url":null,"abstract":"We show that if the partial sums $S_{n_i}(x)=\\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\\sum_{k=0}^{\\infty}a_kf_k(x)$, where $\\sup_i{n_i}/(n_{i-1})<\\infty$, converge in measure to a bounded function $f$ and $\\sup_i|S_{n_i}(x)|<\\infty$ for $ x\\not\\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On uniqueness for Franklin series with a convergent subsequence of partial sums\",\"authors\":\"G. Gevorkyan\",\"doi\":\"10.4213/sm9741e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if the partial sums $S_{n_i}(x)=\\\\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\\\\sum_{k=0}^{\\\\infty}a_kf_k(x)$, where $\\\\sup_i{n_i}/(n_{i-1})<\\\\infty$, converge in measure to a bounded function $f$ and $\\\\sup_i|S_{n_i}(x)|<\\\\infty$ for $ x\\\\not\\\\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9741e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/sm9741e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果Franklin级数$\sum_{k=0}^{\infty}a_kf_k(x)$(其中$\sup_i{n_i}/(n_{i-1})<\infty$)的部分和$S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$在测度上收敛于有界函数$f$和$\sup_i|S_{n_i}(x)|<\infty$(对于$ x\not\in B$,其中$B$是可数集合),那么这个级数就是$f$的傅里叶-富兰克林级数。参考书目:24篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On uniqueness for Franklin series with a convergent subsequence of partial sums
We show that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$, where $\sup_i{n_i}/(n_{i-1})<\infty$, converge in measure to a bounded function $f$ and $\sup_i|S_{n_i}(x)|<\infty$ for $ x\not\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信