{"title":"部分和收敛子序列的Franklin级数的唯一性","authors":"G. Gevorkyan","doi":"10.4213/sm9741e","DOIUrl":null,"url":null,"abstract":"We show that if the partial sums $S_{n_i}(x)=\\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\\sum_{k=0}^{\\infty}a_kf_k(x)$, where $\\sup_i{n_i}/(n_{i-1})<\\infty$, converge in measure to a bounded function $f$ and $\\sup_i|S_{n_i}(x)|<\\infty$ for $ x\\not\\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On uniqueness for Franklin series with a convergent subsequence of partial sums\",\"authors\":\"G. Gevorkyan\",\"doi\":\"10.4213/sm9741e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if the partial sums $S_{n_i}(x)=\\\\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\\\\sum_{k=0}^{\\\\infty}a_kf_k(x)$, where $\\\\sup_i{n_i}/(n_{i-1})<\\\\infty$, converge in measure to a bounded function $f$ and $\\\\sup_i|S_{n_i}(x)|<\\\\infty$ for $ x\\\\not\\\\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9741e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/sm9741e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On uniqueness for Franklin series with a convergent subsequence of partial sums
We show that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$, where $\sup_i{n_i}/(n_{i-1})<\infty$, converge in measure to a bounded function $f$ and $\sup_i|S_{n_i}(x)|<\infty$ for $ x\not\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.