{"title":"部分和收敛子序列的Franklin级数的唯一性","authors":"G. Gevorkyan","doi":"10.4213/sm9741e","DOIUrl":null,"url":null,"abstract":"We show that if the partial sums $S_{n_i}(x)=\\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\\sum_{k=0}^{\\infty}a_kf_k(x)$, where $\\sup_i{n_i}/(n_{i-1})<\\infty$, converge in measure to a bounded function $f$ and $\\sup_i|S_{n_i}(x)|<\\infty$ for $ x\\not\\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"83 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On uniqueness for Franklin series with a convergent subsequence of partial sums\",\"authors\":\"G. Gevorkyan\",\"doi\":\"10.4213/sm9741e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if the partial sums $S_{n_i}(x)=\\\\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\\\\sum_{k=0}^{\\\\infty}a_kf_k(x)$, where $\\\\sup_i{n_i}/(n_{i-1})<\\\\infty$, converge in measure to a bounded function $f$ and $\\\\sup_i|S_{n_i}(x)|<\\\\infty$ for $ x\\\\not\\\\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.\",\"PeriodicalId\":49573,\"journal\":{\"name\":\"Sbornik Mathematics\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sbornik Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9741e\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/sm9741e","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On uniqueness for Franklin series with a convergent subsequence of partial sums
We show that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$, where $\sup_i{n_i}/(n_{i-1})<\infty$, converge in measure to a bounded function $f$ and $\sup_i|S_{n_i}(x)|<\infty$ for $ x\not\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in:
Mathematical analysis
Ordinary differential equations
Partial differential equations
Mathematical physics
Geometry
Algebra
Functional analysis