基于复杂性特征的基因组序列信号检测

M. Kargar, Aijun An, N. Cercone, Kayvan Tirdad, Morteza Zihayat
{"title":"基于复杂性特征的基因组序列信号检测","authors":"M. Kargar, Aijun An, N. Cercone, Kayvan Tirdad, Morteza Zihayat","doi":"10.1145/2500863.2500867","DOIUrl":null,"url":null,"abstract":"In this work, we tackle the problem of evaluating complexity methods and measures for finding interesting signals in the whole genome of three prokaryotic organisms. In addition to previous complexity measures, new measures are introduced for representing Open Reading Frames (ORF). We apply different classification algorithms to determine which complexity measure results in better predictive performance in discriminating genes from pseudo-genes in ORFs. Also, we investigate whether positions and lengths of windows in ORFs have significant impact on distinguishing between genes and pseudo-genes. Different classification algorithms are applied for classifying ORFs into genes and pseudo-genes.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"729 1","pages":"25-33"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal detection in genome sequences using complexity based features\",\"authors\":\"M. Kargar, Aijun An, N. Cercone, Kayvan Tirdad, Morteza Zihayat\",\"doi\":\"10.1145/2500863.2500867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we tackle the problem of evaluating complexity methods and measures for finding interesting signals in the whole genome of three prokaryotic organisms. In addition to previous complexity measures, new measures are introduced for representing Open Reading Frames (ORF). We apply different classification algorithms to determine which complexity measure results in better predictive performance in discriminating genes from pseudo-genes in ORFs. Also, we investigate whether positions and lengths of windows in ORFs have significant impact on distinguishing between genes and pseudo-genes. Different classification algorithms are applied for classifying ORFs into genes and pseudo-genes.\",\"PeriodicalId\":90497,\"journal\":{\"name\":\"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)\",\"volume\":\"729 1\",\"pages\":\"25-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2500863.2500867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500863.2500867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们解决了在三种原核生物的全基因组中寻找有趣信号的评估复杂性方法和措施的问题。除了之前的复杂度度量外,还引入了新的度量来表示开放阅读帧(ORF)。我们应用不同的分类算法来确定哪种复杂性度量在orf中区分基因和伪基因方面具有更好的预测性能。此外,我们还研究了orf中窗口的位置和长度是否对基因和伪基因的区分有显著影响。将orf分类为基因和伪基因采用了不同的分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal detection in genome sequences using complexity based features
In this work, we tackle the problem of evaluating complexity methods and measures for finding interesting signals in the whole genome of three prokaryotic organisms. In addition to previous complexity measures, new measures are introduced for representing Open Reading Frames (ORF). We apply different classification algorithms to determine which complexity measure results in better predictive performance in discriminating genes from pseudo-genes in ORFs. Also, we investigate whether positions and lengths of windows in ORFs have significant impact on distinguishing between genes and pseudo-genes. Different classification algorithms are applied for classifying ORFs into genes and pseudo-genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信