{"title":"于佩尔猜想和几乎单群","authors":"A. Daneshkhah","doi":"10.4171/rsmup/103","DOIUrl":null,"url":null,"abstract":"Let G be a finite group and cd(G) denote the set of complex irreducible character degrees of G. In this paper, we prove that if G is a finite group and H is an almost simple group whose socle is H0 = PSL(2, q) with q = 2 f (f prime) such that cd(G) = cd(H), then there exists an abelian subgroup A of G such that G/A is isomorphic to H. In view of Huppert’s conjecture (2000), the main result of this paper gives rise to some examples that G is not necessarily a direct product of A and H, and consequently, we cannot extend this conjecture to almost simple groups. Mathematics Subject Classification (2010). Primary: 20C15; Secondary: 20D05","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Huppert’s conjecture and almost simple groups\",\"authors\":\"A. Daneshkhah\",\"doi\":\"10.4171/rsmup/103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finite group and cd(G) denote the set of complex irreducible character degrees of G. In this paper, we prove that if G is a finite group and H is an almost simple group whose socle is H0 = PSL(2, q) with q = 2 f (f prime) such that cd(G) = cd(H), then there exists an abelian subgroup A of G such that G/A is isomorphic to H. In view of Huppert’s conjecture (2000), the main result of this paper gives rise to some examples that G is not necessarily a direct product of A and H, and consequently, we cannot extend this conjecture to almost simple groups. Mathematics Subject Classification (2010). Primary: 20C15; Secondary: 20D05\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
让G是一个有限群和cd (G)表示一组复杂的不可约特征度G在这篇文章中,我们证明,如果G是一个有限群和H几乎是一个简单的群是谁的脚柱H0 = PSL (2 q q = 2 f (f '), cd (G) = cd (H),然后有一个交换子群G, G / H的同构于佩尔猜想的看法(2000),本文的主要结果产生了一些例子,G未必是a股和H的直接产品,因此,我们不能把这个猜想推广到几乎简单的群上。数学学科分类(2010)。主:20 c15;二级:20 d05
Let G be a finite group and cd(G) denote the set of complex irreducible character degrees of G. In this paper, we prove that if G is a finite group and H is an almost simple group whose socle is H0 = PSL(2, q) with q = 2 f (f prime) such that cd(G) = cd(H), then there exists an abelian subgroup A of G such that G/A is isomorphic to H. In view of Huppert’s conjecture (2000), the main result of this paper gives rise to some examples that G is not necessarily a direct product of A and H, and consequently, we cannot extend this conjecture to almost simple groups. Mathematics Subject Classification (2010). Primary: 20C15; Secondary: 20D05