一类拟势方程伽辽金近似的渐近误差界

E.P. Zhidov, E.G. Nikonov, B.N. Khoromskii
{"title":"一类拟势方程伽辽金近似的渐近误差界","authors":"E.P. Zhidov,&nbsp;E.G. Nikonov,&nbsp;B.N. Khoromskii","doi":"10.1016/0041-5553(90)90201-3","DOIUrl":null,"url":null,"abstract":"<div><p>Error bounds for the Galerkin approximation of solutions to the eigenvalue problem are derived for a class of quasipotential integral equations. In the case of completely continuous operators conditions are derived under which the error in the approximate solutions of a spectral problem can be expanded in powers of a parameter <em>r</em><sup>−1</sup>,where <em>r</em> is the length of the discretization interval of the integral operator, which is defined on a half-line.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 3","pages":"Pages 133-140"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90201-3","citationCount":"0","resultStr":"{\"title\":\"Asymptotic error bounds in Galerkin approximation for a certain class of quasipotential equations\",\"authors\":\"E.P. Zhidov,&nbsp;E.G. Nikonov,&nbsp;B.N. Khoromskii\",\"doi\":\"10.1016/0041-5553(90)90201-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Error bounds for the Galerkin approximation of solutions to the eigenvalue problem are derived for a class of quasipotential integral equations. In the case of completely continuous operators conditions are derived under which the error in the approximate solutions of a spectral problem can be expanded in powers of a parameter <em>r</em><sup>−1</sup>,where <em>r</em> is the length of the discretization interval of the integral operator, which is defined on a half-line.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 3\",\"pages\":\"Pages 133-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90201-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0041555390902013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0041555390902013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导出了一类拟势积分方程特征值问题解的伽辽金近似的误差界。在完全连续算子的情况下,导出了谱问题近似解的误差可以以参数r−1的幂展开的条件,其中r是在半线上定义的积分算子的离散区间的长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic error bounds in Galerkin approximation for a certain class of quasipotential equations

Error bounds for the Galerkin approximation of solutions to the eigenvalue problem are derived for a class of quasipotential integral equations. In the case of completely continuous operators conditions are derived under which the error in the approximate solutions of a spectral problem can be expanded in powers of a parameter r−1,where r is the length of the discretization interval of the integral operator, which is defined on a half-line.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信