{"title":"径向半经典Schrödinger算子的共振唯一性","authors":"K. Datchev, Hamid Hezari","doi":"10.1093/amrx/abr017","DOIUrl":null,"url":null,"abstract":"We prove that radial, monotonic, superexponentially decaying potentials in R^n, n greater than or equal to 1 odd, are determined by the resonances of the associated semiclassical Schrodinger operator among all superexponentially decaying potentials in R^n.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"53 1","pages":"105-113"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Resonant Uniqueness of Radial Semiclassical Schrödinger Operators\",\"authors\":\"K. Datchev, Hamid Hezari\",\"doi\":\"10.1093/amrx/abr017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that radial, monotonic, superexponentially decaying potentials in R^n, n greater than or equal to 1 odd, are determined by the resonances of the associated semiclassical Schrodinger operator among all superexponentially decaying potentials in R^n.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"53 1\",\"pages\":\"105-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/amrx/abr017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/amrx/abr017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resonant Uniqueness of Radial Semiclassical Schrödinger Operators
We prove that radial, monotonic, superexponentially decaying potentials in R^n, n greater than or equal to 1 odd, are determined by the resonances of the associated semiclassical Schrodinger operator among all superexponentially decaying potentials in R^n.