通过网络传感器插值丢失的时空数据

Shun Hattori
{"title":"通过网络传感器插值丢失的时空数据","authors":"Shun Hattori","doi":"10.3384/ECP171421048","DOIUrl":null,"url":null,"abstract":"We experience various phenomena (e.g., rain, snow, and earthquake) in the physical world, while we carry out various actions (e.g., posting, querying, and e-shopping) in the Web world. Many researches have tried to mine the Web for knowledge about various phenomena in the physical world, and also several Web services using Webmined knowledge have been made available for the public. Meanwhile, the previous papers have introduced various kinds of “Web Sensors” with Temporal Shift, Temporal Propagation, and Geospatial Propagation to sense the Web for knowledge about a targeted physical phenomenon, i.e., to extract its spatiotemporal data sensitively by analyzing big data on the Web (e.g., Web documents, Web query logs, and e-shopping logs), and compared them based on their correlation coefficients with Japan Meteorological Agency’s physically-sensed spatiotemporal statistics to ensure the accuracy of Web-sensed spatiotemporal data sufficiently. As an industrial application of Web Sensors to a problem of the loss or error of physically-sensed spatiotemporal data due to some sort of troubles (e.g., temporary faults of JMA’s observatories), this paper tries to enable Web Sensors to interpolate lost spatiotemporal data of physical statistics by regression analysis. Keywords-Spatiotemporal Data Mining; Big Data Analysis;","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolating Lost Spatio-Temporal Data by Web Sensors\",\"authors\":\"Shun Hattori\",\"doi\":\"10.3384/ECP171421048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experience various phenomena (e.g., rain, snow, and earthquake) in the physical world, while we carry out various actions (e.g., posting, querying, and e-shopping) in the Web world. Many researches have tried to mine the Web for knowledge about various phenomena in the physical world, and also several Web services using Webmined knowledge have been made available for the public. Meanwhile, the previous papers have introduced various kinds of “Web Sensors” with Temporal Shift, Temporal Propagation, and Geospatial Propagation to sense the Web for knowledge about a targeted physical phenomenon, i.e., to extract its spatiotemporal data sensitively by analyzing big data on the Web (e.g., Web documents, Web query logs, and e-shopping logs), and compared them based on their correlation coefficients with Japan Meteorological Agency’s physically-sensed spatiotemporal statistics to ensure the accuracy of Web-sensed spatiotemporal data sufficiently. As an industrial application of Web Sensors to a problem of the loss or error of physically-sensed spatiotemporal data due to some sort of troubles (e.g., temporary faults of JMA’s observatories), this paper tries to enable Web Sensors to interpolate lost spatiotemporal data of physical statistics by regression analysis. Keywords-Spatiotemporal Data Mining; Big Data Analysis;\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP171421048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3384/ECP171421048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在物理世界中经历各种现象(例如,下雨、下雪和地震),而我们在Web世界中执行各种操作(例如,发布、查询和电子购物)。许多研究人员试图从Web中挖掘关于物理世界中各种现象的知识,并且已经向公众提供了一些使用Web挖掘知识的Web服务。同时,前人介绍了各种具有时间位移、时间传播和地理空间传播的“Web传感器”,通过分析Web上的大数据(如Web文档、Web查询日志和电子购物日志),敏感地提取Web上的时空数据,从而感知Web上关于目标物理现象的知识。并将其与日本气象厅物理感测时空统计的相关系数进行比较,充分保证web感测时空数据的准确性。针对由于某种原因(如气象厅天文台的临时故障)导致物理感知时空数据丢失或错误的问题,本文将Web Sensors作为一种工业应用,尝试通过回归分析使Web Sensors能够对丢失的物理统计时空数据进行插值。关键词:时空数据挖掘;大数据分析;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolating Lost Spatio-Temporal Data by Web Sensors
We experience various phenomena (e.g., rain, snow, and earthquake) in the physical world, while we carry out various actions (e.g., posting, querying, and e-shopping) in the Web world. Many researches have tried to mine the Web for knowledge about various phenomena in the physical world, and also several Web services using Webmined knowledge have been made available for the public. Meanwhile, the previous papers have introduced various kinds of “Web Sensors” with Temporal Shift, Temporal Propagation, and Geospatial Propagation to sense the Web for knowledge about a targeted physical phenomenon, i.e., to extract its spatiotemporal data sensitively by analyzing big data on the Web (e.g., Web documents, Web query logs, and e-shopping logs), and compared them based on their correlation coefficients with Japan Meteorological Agency’s physically-sensed spatiotemporal statistics to ensure the accuracy of Web-sensed spatiotemporal data sufficiently. As an industrial application of Web Sensors to a problem of the loss or error of physically-sensed spatiotemporal data due to some sort of troubles (e.g., temporary faults of JMA’s observatories), this paper tries to enable Web Sensors to interpolate lost spatiotemporal data of physical statistics by regression analysis. Keywords-Spatiotemporal Data Mining; Big Data Analysis;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信