F. Zarrinkalam, Stefano Faralli, Guangyuan Piao, E. Bagheri
求助PDF
{"title":"从社交媒体中提取、挖掘和预测用户兴趣","authors":"F. Zarrinkalam, Stefano Faralli, Guangyuan Piao, E. Bagheri","doi":"10.1561/1500000078","DOIUrl":null,"url":null,"abstract":"The abundance of user generated content on social media provides the opportunity to build models that are able to accurately and effectively extract, mine and predict users’ interests with the hopes of enabling more effective user engagement, better quality delivery of appropriate services and higher user satisfaction. While traditional methods for building user profiles relied on AI-based preference elicitation techniques that could have been considered to be intrusive and undesirable by the users, more recent advances are focused on a non-intrusive yet accurate way of determining users’ interests and preferences. In this monograph, we will cover five important subjects related to the mining of user interests from social media: (1) the foundations of social user interest modeling, such as information sources, various types of representation models and temporal features, (2) techniques that have been adopted or proposed for Fattane Zarrinkalam, Stefano Faralli, Guangyuan Piao and Ebrahim Bagheri (2020), “Extracting, Mining and Predicting Users’ Interests from Social Media”, Foundations and Trends © in Information Retrieval: Vol. 14, No. 5, pp 445–617. DOI: 10.1561/1500000078. Full text available at: http://dx.doi.org/10.1561/1500000078","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"724 1","pages":"445-617"},"PeriodicalIF":8.3000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Extracting, Mining and Predicting Users' Interests from Social Media\",\"authors\":\"F. Zarrinkalam, Stefano Faralli, Guangyuan Piao, E. Bagheri\",\"doi\":\"10.1561/1500000078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abundance of user generated content on social media provides the opportunity to build models that are able to accurately and effectively extract, mine and predict users’ interests with the hopes of enabling more effective user engagement, better quality delivery of appropriate services and higher user satisfaction. While traditional methods for building user profiles relied on AI-based preference elicitation techniques that could have been considered to be intrusive and undesirable by the users, more recent advances are focused on a non-intrusive yet accurate way of determining users’ interests and preferences. In this monograph, we will cover five important subjects related to the mining of user interests from social media: (1) the foundations of social user interest modeling, such as information sources, various types of representation models and temporal features, (2) techniques that have been adopted or proposed for Fattane Zarrinkalam, Stefano Faralli, Guangyuan Piao and Ebrahim Bagheri (2020), “Extracting, Mining and Predicting Users’ Interests from Social Media”, Foundations and Trends © in Information Retrieval: Vol. 14, No. 5, pp 445–617. DOI: 10.1561/1500000078. Full text available at: http://dx.doi.org/10.1561/1500000078\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"724 1\",\"pages\":\"445-617\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000078\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000078","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 8
引用
批量引用
Extracting, Mining and Predicting Users' Interests from Social Media
The abundance of user generated content on social media provides the opportunity to build models that are able to accurately and effectively extract, mine and predict users’ interests with the hopes of enabling more effective user engagement, better quality delivery of appropriate services and higher user satisfaction. While traditional methods for building user profiles relied on AI-based preference elicitation techniques that could have been considered to be intrusive and undesirable by the users, more recent advances are focused on a non-intrusive yet accurate way of determining users’ interests and preferences. In this monograph, we will cover five important subjects related to the mining of user interests from social media: (1) the foundations of social user interest modeling, such as information sources, various types of representation models and temporal features, (2) techniques that have been adopted or proposed for Fattane Zarrinkalam, Stefano Faralli, Guangyuan Piao and Ebrahim Bagheri (2020), “Extracting, Mining and Predicting Users’ Interests from Social Media”, Foundations and Trends © in Information Retrieval: Vol. 14, No. 5, pp 445–617. DOI: 10.1561/1500000078. Full text available at: http://dx.doi.org/10.1561/1500000078