未镀铜、硫化物镀铜和氯化物镀铜的腐蚀和防护

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ž. Novak, T. Kosec
{"title":"未镀铜、硫化物镀铜和氯化物镀铜的腐蚀和防护","authors":"Ž. Novak, T. Kosec","doi":"10.17222/mit.2022.641","DOIUrl":null,"url":null,"abstract":"The surface of bronze undergoes changes when it is exposed to a polluted atmosphere, and bronze should therefore be protected from this natural deterioration. The most common protective coating currently in use is Incralac, which includes toxic components and is reported to dissolve a few months after application. This work therefore investigates a fluoropolymer-based coating (FA-MS), and compares it to the protection offered by Incralac. Bronze samples (non-patinated, sulphide-patinated or chloride-patinated) were exposed to simulated urban rain for four months. The corrosion products formed were characterised using SEM/EDS and Raman analyses. To study the protection efficiency of the newly developed fluoropolymer coating (FA-MS) and Incralac protection, various electrochemical methods were used: measurements of open circuit potential linear polarisation and potentiodynamic measurements. Findings show that the FA-MS coating provides a protection efficiency of 71 % for chloride-patinated bronze and 99.5 % for sulphide-patinated bronze. Contact angles of the FA-MS samples were higher than those of the unprotected samples or the samples protected by Incralac, indicating better hydrophobic properties of the FA-MS coating.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CORROSION AND PROTECTION OF NON-PATINATED, SULPHIDE- AND CHLORIDE-PATINATED BRONZE\",\"authors\":\"Ž. Novak, T. Kosec\",\"doi\":\"10.17222/mit.2022.641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface of bronze undergoes changes when it is exposed to a polluted atmosphere, and bronze should therefore be protected from this natural deterioration. The most common protective coating currently in use is Incralac, which includes toxic components and is reported to dissolve a few months after application. This work therefore investigates a fluoropolymer-based coating (FA-MS), and compares it to the protection offered by Incralac. Bronze samples (non-patinated, sulphide-patinated or chloride-patinated) were exposed to simulated urban rain for four months. The corrosion products formed were characterised using SEM/EDS and Raman analyses. To study the protection efficiency of the newly developed fluoropolymer coating (FA-MS) and Incralac protection, various electrochemical methods were used: measurements of open circuit potential linear polarisation and potentiodynamic measurements. Findings show that the FA-MS coating provides a protection efficiency of 71 % for chloride-patinated bronze and 99.5 % for sulphide-patinated bronze. Contact angles of the FA-MS samples were higher than those of the unprotected samples or the samples protected by Incralac, indicating better hydrophobic properties of the FA-MS coating.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2022.641\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2022.641","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当青铜暴露在污染的大气中时,它的表面会发生变化,因此青铜应该受到保护,以免这种自然劣化。目前使用的最常见的保护涂层是Incralac,它含有有毒成分,据报道在使用几个月后就会溶解。因此,这项工作研究了一种含氟聚合物涂层(FA-MS),并将其与Incralac提供的保护进行了比较。青铜样品(未镀、硫化物镀或氯化物镀)暴露在模拟城市雨中四个月。采用SEM/EDS和拉曼分析对腐蚀产物进行了表征。为了研究新开发的含氟聚合物涂层(FA-MS)和Incralac保护的保护效率,使用了各种电化学方法:开路电位线性极化测量和动电位测量。结果表明,FA-MS涂层对氯化铜的保护效率为71%,对硫化铜的保护效率为99.5%。FA-MS涂层的接触角大于未处理和Incralac保护的样品,表明FA-MS涂层具有更好的疏水性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CORROSION AND PROTECTION OF NON-PATINATED, SULPHIDE- AND CHLORIDE-PATINATED BRONZE
The surface of bronze undergoes changes when it is exposed to a polluted atmosphere, and bronze should therefore be protected from this natural deterioration. The most common protective coating currently in use is Incralac, which includes toxic components and is reported to dissolve a few months after application. This work therefore investigates a fluoropolymer-based coating (FA-MS), and compares it to the protection offered by Incralac. Bronze samples (non-patinated, sulphide-patinated or chloride-patinated) were exposed to simulated urban rain for four months. The corrosion products formed were characterised using SEM/EDS and Raman analyses. To study the protection efficiency of the newly developed fluoropolymer coating (FA-MS) and Incralac protection, various electrochemical methods were used: measurements of open circuit potential linear polarisation and potentiodynamic measurements. Findings show that the FA-MS coating provides a protection efficiency of 71 % for chloride-patinated bronze and 99.5 % for sulphide-patinated bronze. Contact angles of the FA-MS samples were higher than those of the unprotected samples or the samples protected by Incralac, indicating better hydrophobic properties of the FA-MS coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiali in tehnologije
Materiali in tehnologije 工程技术-材料科学:综合
CiteScore
1.30
自引率
0.00%
发文量
73
审稿时长
4-8 weeks
期刊介绍: The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信