二维刮擦层模拟中的斑点相互作用

G. Decristoforo, F. Militello, T. Nicholas, J. Omotani, C. Marsden, N. Walkden, O. E. Garcia
{"title":"二维刮擦层模拟中的斑点相互作用","authors":"G. Decristoforo, F. Militello, T. Nicholas, J. Omotani, C. Marsden, N. Walkden, O. E. Garcia","doi":"10.1063/5.0021314","DOIUrl":null,"url":null,"abstract":"Interaction of coherent structures known as blobs in the scrape-off layer of magnetic confinement fusion devices is investigated. Isolated and interacting seeded blobs as well as full plasma turbulence are studied with a two dimensional fluid code. The features of the blobs (size, amplitude, position) are determined with a blob tracking algorithm, which identifies them as coherent structures above a chosen density threshold and compared to a conventional center of mass approach. The agreement of these two methods is shown to be affected by the parameters of the blob tracking algorithm. The benchmarked approach is then extended to a population of interacting plasma blobs with statistically distributed amplitudes, sizes and initial positions for different levels of intermittency. As expected, for decreasing intermittency, we observe an increasing number of blobs deviating from size-velocity scaling laws of perfectly isolated blobs. This is found to be caused by the interaction of blobs with the electrostatic potential of one another, leading to higher average blob velocities. The degree of variation from the picture of perfectly isolated blobs is quantified as a function of the average waiting time of the seeded blobs.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Blob interactions in 2D scrape-off layer simulations\",\"authors\":\"G. Decristoforo, F. Militello, T. Nicholas, J. Omotani, C. Marsden, N. Walkden, O. E. Garcia\",\"doi\":\"10.1063/5.0021314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interaction of coherent structures known as blobs in the scrape-off layer of magnetic confinement fusion devices is investigated. Isolated and interacting seeded blobs as well as full plasma turbulence are studied with a two dimensional fluid code. The features of the blobs (size, amplitude, position) are determined with a blob tracking algorithm, which identifies them as coherent structures above a chosen density threshold and compared to a conventional center of mass approach. The agreement of these two methods is shown to be affected by the parameters of the blob tracking algorithm. The benchmarked approach is then extended to a population of interacting plasma blobs with statistically distributed amplitudes, sizes and initial positions for different levels of intermittency. As expected, for decreasing intermittency, we observe an increasing number of blobs deviating from size-velocity scaling laws of perfectly isolated blobs. This is found to be caused by the interaction of blobs with the electrostatic potential of one another, leading to higher average blob velocities. The degree of variation from the picture of perfectly isolated blobs is quantified as a function of the average waiting time of the seeded blobs.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0021314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0021314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了磁约束聚变装置刮擦层中相干结构团的相互作用。用二维流体程序研究了孤立的和相互作用的种子团以及全等离子体湍流。斑点的特征(大小,振幅,位置)由斑点跟踪算法确定,该算法将它们识别为超过选定密度阈值的相干结构,并与传统的质心方法进行比较。结果表明,这两种方法的一致性受到blob跟踪算法参数的影响。然后将基准方法扩展到具有统计分布的振幅,大小和初始位置的不同间歇性水平的相互作用等离子体团的种群。正如预期的那样,为了减少间歇性,我们观察到越来越多的斑点偏离完美隔离斑点的尺寸-速度标度定律。发现这是由斑点与彼此的静电势相互作用引起的,导致更高的平均斑点速度。从完全隔离的斑点图像的变化程度被量化为种子斑点平均等待时间的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blob interactions in 2D scrape-off layer simulations
Interaction of coherent structures known as blobs in the scrape-off layer of magnetic confinement fusion devices is investigated. Isolated and interacting seeded blobs as well as full plasma turbulence are studied with a two dimensional fluid code. The features of the blobs (size, amplitude, position) are determined with a blob tracking algorithm, which identifies them as coherent structures above a chosen density threshold and compared to a conventional center of mass approach. The agreement of these two methods is shown to be affected by the parameters of the blob tracking algorithm. The benchmarked approach is then extended to a population of interacting plasma blobs with statistically distributed amplitudes, sizes and initial positions for different levels of intermittency. As expected, for decreasing intermittency, we observe an increasing number of blobs deviating from size-velocity scaling laws of perfectly isolated blobs. This is found to be caused by the interaction of blobs with the electrostatic potential of one another, leading to higher average blob velocities. The degree of variation from the picture of perfectly isolated blobs is quantified as a function of the average waiting time of the seeded blobs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信