表观遗传学对阿尔茨海默病影响的PET成像

Q1 Neuroscience
P. J. Couto, R. Millis
{"title":"表观遗传学对阿尔茨海默病影响的PET成像","authors":"P. J. Couto, R. Millis","doi":"10.1155/2015/575078","DOIUrl":null,"url":null,"abstract":"The precise role of environment-gene interactions (epigenetics) in the development and progression of Alzheimer's disease (AD) is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB) images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.","PeriodicalId":13802,"journal":{"name":"International Journal of Alzheimer's Disease","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"PET Imaging of Epigenetic Influences on Alzheimer's Disease\",\"authors\":\"P. J. Couto, R. Millis\",\"doi\":\"10.1155/2015/575078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise role of environment-gene interactions (epigenetics) in the development and progression of Alzheimer's disease (AD) is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB) images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.\",\"PeriodicalId\":13802,\"journal\":{\"name\":\"International Journal of Alzheimer's Disease\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/575078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Alzheimer's Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/575078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 15

摘要

环境-基因相互作用(表观遗传学)在阿尔茨海默病(AD)发生和进展中的确切作用尚不清楚。本综述的前提是,放射性示踪剂特异性PET成像允许临床医生可视化表观遗传影响事件,并且这种成像可能为预防、诊断和治疗AD提供新的、有价值的见解。目前对表观遗传学在AD中的作用的理解以及PET放射性示踪剂用于体内诊断的基本原理进行了综述。讨论了各种PET示踪剂在观察表观遗传对AD的影响及其在诊断中的应用的相对效果。例如,[18F]FAHA显示了HDAC活性差异位点,[18F]FDG间接阐明了神经元低甲基化位点,含有碳-11同位素的匹兹堡化合物B ([11C]PiB)显示了淀粉样β斑块沉积。明确的AD诊断目前只能通过死后淀粉样斑块和tau神经原纤维缠结的组织学观察来实现。因此,可靠的体内神经成像技术可以为AD的早期诊断和治疗提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PET Imaging of Epigenetic Influences on Alzheimer's Disease
The precise role of environment-gene interactions (epigenetics) in the development and progression of Alzheimer's disease (AD) is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB) images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Alzheimer's Disease
International Journal of Alzheimer's Disease Neuroscience-Behavioral Neuroscience
CiteScore
10.10
自引率
0.00%
发文量
3
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信