有限元自适应随机配置的收敛性

M. Feischl, Andrea Scaglioni
{"title":"有限元自适应随机配置的收敛性","authors":"M. Feischl, Andrea Scaglioni","doi":"10.5445/IR/1000125783","DOIUrl":null,"url":null,"abstract":"We consider an elliptic partial differential equation with a random diffusion parameter discretized by a stochastic collocation method in the parameter domain and a finite element method in the spatial domain. We prove for the first time convergence of a stochastic collocation algorithm which adaptively enriches the parameter space as well as refines the finite element meshes.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Convergence of adaptive stochastic collocation with finite elements\",\"authors\":\"M. Feischl, Andrea Scaglioni\",\"doi\":\"10.5445/IR/1000125783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an elliptic partial differential equation with a random diffusion parameter discretized by a stochastic collocation method in the parameter domain and a finite element method in the spatial domain. We prove for the first time convergence of a stochastic collocation algorithm which adaptively enriches the parameter space as well as refines the finite element meshes.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000125783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000125783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

考虑一类具有随机扩散参数的椭圆型偏微分方程,在参数域用随机配点法离散,在空间域用有限元法离散。首次证明了一种自适应丰富参数空间和细化有限元网格的随机配置算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of adaptive stochastic collocation with finite elements
We consider an elliptic partial differential equation with a random diffusion parameter discretized by a stochastic collocation method in the parameter domain and a finite element method in the spatial domain. We prove for the first time convergence of a stochastic collocation algorithm which adaptively enriches the parameter space as well as refines the finite element meshes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信