{"title":"正则幂零Hessenberg变分与Schubert多项式的上同调环","authors":"T. Horiguchi","doi":"10.3792/PJAA.94.87","DOIUrl":null,"url":null,"abstract":"In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials $f_{i,j}$ were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial $f_{i,j}$ is an alternating sum of certain Schubert polynomials.","PeriodicalId":49668,"journal":{"name":"Proceedings of the Japan Academy Series A-Mathematical Sciences","volume":"25 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials\",\"authors\":\"T. Horiguchi\",\"doi\":\"10.3792/PJAA.94.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials $f_{i,j}$ were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial $f_{i,j}$ is an alternating sum of certain Schubert polynomials.\",\"PeriodicalId\":49668,\"journal\":{\"name\":\"Proceedings of the Japan Academy Series A-Mathematical Sciences\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Japan Academy Series A-Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.94.87\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy Series A-Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.94.87","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials
In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials $f_{i,j}$ were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial $f_{i,j}$ is an alternating sum of certain Schubert polynomials.
期刊介绍:
The aim of the Proceedings of the Japan Academy, Series A, is the rapid publication of original papers in mathematical sciences. The paper should be written in English or French (preferably in English), and at most 6 pages long when published. A paper that is a résumé or an announcement (i.e. one whose details are to be published elsewhere) can also be submitted.
The paper is published promptly if once communicated by a Member of the Academy at its General Meeting, which is held monthly except in July and in August.