正则幂零Hessenberg变分与Schubert多项式的上同调环

Pub Date : 2018-01-24 DOI:10.3792/PJAA.94.87
T. Horiguchi
{"title":"正则幂零Hessenberg变分与Schubert多项式的上同调环","authors":"T. Horiguchi","doi":"10.3792/PJAA.94.87","DOIUrl":null,"url":null,"abstract":"In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials $f_{i,j}$ were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial $f_{i,j}$ is an alternating sum of certain Schubert polynomials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials\",\"authors\":\"T. Horiguchi\",\"doi\":\"10.3792/PJAA.94.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials $f_{i,j}$ were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial $f_{i,j}$ is an alternating sum of certain Schubert polynomials.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.94.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.94.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了正则幂零Hessenberg变量的上同环与Schubert多项式之间的关系。为了描述正则幂零Hessenberg变量的上同环的显式表示,Abe-Harada-Horiguchi-Masuda引入了多项式$f_{i,j}$。我们证明了每个多项式$f_{i,j}$是某些舒伯特多项式的交替和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials
In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials $f_{i,j}$ were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial $f_{i,j}$ is an alternating sum of certain Schubert polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信