Yan Peng, Yueyi Zhang, Peilin Xiao, Xiaoyan Sun, Feng Wu
{"title":"更好更快:基于事件的对象检测的自适应事件转换","authors":"Yan Peng, Yueyi Zhang, Peilin Xiao, Xiaoyan Sun, Feng Wu","doi":"10.1609/aaai.v37i2.25298","DOIUrl":null,"url":null,"abstract":"Event cameras are a kind of bio-inspired imaging sensor, which asynchronously collect sparse event streams with many advantages. In this paper, we focus on building better and faster event-based object detectors. To this end, we first propose a computationally efficient event representation Hyper Histogram, which adequately preserves both the polarity and temporal information of events. Then we devise an Adaptive Event Conversion module, which converts events into Hyper Histograms according to event density via an adaptive queue. Moreover, we introduce a novel event-based augmentation method Shadow Mosaic, which significantly improves the event sample diversity and enhances the generalization ability of detection models. We equip our proposed modules on three representative object detection models: YOLOv5, Deformable-DETR, and RetinaNet. Experimental results on three event-based detection datasets (1Mpx, Gen1, and MVSEC-NIGHTL21) demonstrate that our proposed approach outperforms other state-of-the-art methods by a large margin, while achieving a much faster running speed (< 14 ms and < 4 ms for 50 ms event data on the 1Mpx and Gen1 datasets).","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"60 1","pages":"2056-2064"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Better and Faster: Adaptive Event Conversion for Event-Based Object Detection\",\"authors\":\"Yan Peng, Yueyi Zhang, Peilin Xiao, Xiaoyan Sun, Feng Wu\",\"doi\":\"10.1609/aaai.v37i2.25298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event cameras are a kind of bio-inspired imaging sensor, which asynchronously collect sparse event streams with many advantages. In this paper, we focus on building better and faster event-based object detectors. To this end, we first propose a computationally efficient event representation Hyper Histogram, which adequately preserves both the polarity and temporal information of events. Then we devise an Adaptive Event Conversion module, which converts events into Hyper Histograms according to event density via an adaptive queue. Moreover, we introduce a novel event-based augmentation method Shadow Mosaic, which significantly improves the event sample diversity and enhances the generalization ability of detection models. We equip our proposed modules on three representative object detection models: YOLOv5, Deformable-DETR, and RetinaNet. Experimental results on three event-based detection datasets (1Mpx, Gen1, and MVSEC-NIGHTL21) demonstrate that our proposed approach outperforms other state-of-the-art methods by a large margin, while achieving a much faster running speed (< 14 ms and < 4 ms for 50 ms event data on the 1Mpx and Gen1 datasets).\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"60 1\",\"pages\":\"2056-2064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i2.25298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i2.25298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Better and Faster: Adaptive Event Conversion for Event-Based Object Detection
Event cameras are a kind of bio-inspired imaging sensor, which asynchronously collect sparse event streams with many advantages. In this paper, we focus on building better and faster event-based object detectors. To this end, we first propose a computationally efficient event representation Hyper Histogram, which adequately preserves both the polarity and temporal information of events. Then we devise an Adaptive Event Conversion module, which converts events into Hyper Histograms according to event density via an adaptive queue. Moreover, we introduce a novel event-based augmentation method Shadow Mosaic, which significantly improves the event sample diversity and enhances the generalization ability of detection models. We equip our proposed modules on three representative object detection models: YOLOv5, Deformable-DETR, and RetinaNet. Experimental results on three event-based detection datasets (1Mpx, Gen1, and MVSEC-NIGHTL21) demonstrate that our proposed approach outperforms other state-of-the-art methods by a large margin, while achieving a much faster running speed (< 14 ms and < 4 ms for 50 ms event data on the 1Mpx and Gen1 datasets).