裂缝接触面积对单个粗裂缝宏观弥散的影响

IF 1 4区 工程技术 Q4 MECHANICS
A. Beaudoin, M. Farhat
{"title":"裂缝接触面积对单个粗裂缝宏观弥散的影响","authors":"A. Beaudoin, M. Farhat","doi":"10.5802/CRMECA.82","DOIUrl":null,"url":null,"abstract":"In the scientific literature, the study of the impact of the fracture contact area on macro-dispersion in single rough fractures is still an open question. In this work, we study numerically the combined effects of the fracture roughness and the fracture contact area on the non-Fickian transport in single rough fractures. In particular, we quantify the contribution of the fracture contact area on macro-dispersion. These objectives are achieved by estimating the macro-dispersion coefficient from Monte Carlo parallel numerical simulations in pure advection and advection–diffusion cases. When the fractional void SO is equal to 1 (i.e., for σlnb < 0.25), the Monte Carlo simulations show that macro-dispersion results of two contributions, dispersion caused by the heterogeneity of fracture apertures that induces a channelization of flow paths and molecular diffusion, as shown by the analytical solution proposed by Gelhar in 1993. When the fraction void SO is different from 1 (i.e., forσlnb > 0.25), a third mechanism plays in macro-dispersion. The presence of contacts or obstacles causes a disruption of flow paths. This mechanism is identical to that induced by the fracture roughness with a lower amplitude. Its amplitude is the function of the fractional void SO .","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"3 1","pages":"203-224"},"PeriodicalIF":1.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of the fracture contact area on macro-dispersion in single rough fractures\",\"authors\":\"A. Beaudoin, M. Farhat\",\"doi\":\"10.5802/CRMECA.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the scientific literature, the study of the impact of the fracture contact area on macro-dispersion in single rough fractures is still an open question. In this work, we study numerically the combined effects of the fracture roughness and the fracture contact area on the non-Fickian transport in single rough fractures. In particular, we quantify the contribution of the fracture contact area on macro-dispersion. These objectives are achieved by estimating the macro-dispersion coefficient from Monte Carlo parallel numerical simulations in pure advection and advection–diffusion cases. When the fractional void SO is equal to 1 (i.e., for σlnb < 0.25), the Monte Carlo simulations show that macro-dispersion results of two contributions, dispersion caused by the heterogeneity of fracture apertures that induces a channelization of flow paths and molecular diffusion, as shown by the analytical solution proposed by Gelhar in 1993. When the fraction void SO is different from 1 (i.e., forσlnb > 0.25), a third mechanism plays in macro-dispersion. The presence of contacts or obstacles causes a disruption of flow paths. This mechanism is identical to that induced by the fracture roughness with a lower amplitude. Its amplitude is the function of the fractional void SO .\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"3 1\",\"pages\":\"203-224\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMECA.82\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/CRMECA.82","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

在科学文献中,裂缝接触面积对单个粗裂缝宏观弥散的影响研究仍然是一个悬而未决的问题。在本文中,我们数值研究了裂缝粗糙度和裂缝接触面积对单一粗糙裂缝非菲克输运的综合影响。特别是,我们量化了断裂接触面积对宏观弥散的贡献。这些目标是通过蒙特卡罗平行数值模拟在纯平流和平流扩散情况下估计宏观色散系数来实现的。当分数孔隙SO = 1(即σlnb < 0.25)时,Monte Carlo模拟结果表明,宏观弥散有两种贡献,即由裂缝的非均匀性引起的流道通道化和分子扩散,如Gelhar(1993)提出的解析解所示。当分数孔隙SO > 1(即σlnb > 0.25)时,宏观色散发生第三种机制。触点或障碍物的存在会导致流动路径的中断。该机理与较低振幅断裂粗糙度引起的机理相同。它的振幅是分数空SO的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of the fracture contact area on macro-dispersion in single rough fractures
In the scientific literature, the study of the impact of the fracture contact area on macro-dispersion in single rough fractures is still an open question. In this work, we study numerically the combined effects of the fracture roughness and the fracture contact area on the non-Fickian transport in single rough fractures. In particular, we quantify the contribution of the fracture contact area on macro-dispersion. These objectives are achieved by estimating the macro-dispersion coefficient from Monte Carlo parallel numerical simulations in pure advection and advection–diffusion cases. When the fractional void SO is equal to 1 (i.e., for σlnb < 0.25), the Monte Carlo simulations show that macro-dispersion results of two contributions, dispersion caused by the heterogeneity of fracture apertures that induces a channelization of flow paths and molecular diffusion, as shown by the analytical solution proposed by Gelhar in 1993. When the fraction void SO is different from 1 (i.e., forσlnb > 0.25), a third mechanism plays in macro-dispersion. The presence of contacts or obstacles causes a disruption of flow paths. This mechanism is identical to that induced by the fracture roughness with a lower amplitude. Its amplitude is the function of the fractional void SO .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信