摇切片和摇和谐环节

A. Bosman
{"title":"摇切片和摇和谐环节","authors":"A. Bosman","doi":"10.1142/S021821652050087X","DOIUrl":null,"url":null,"abstract":"We can construct a 4-manifold by attaching 2-handles to a 4-ball with framing r along the components of a link in the boundary of the 4-ball. We define a link as r-shake slice if there exists embedded spheres that represent the generators of the second homology of the 4-manifold. This naturally extends r-shake slice, a generalization of slice that has previously only been studied for knots, to links of more than one component. We also define a relative notion of shake r-concordance for links and versions with stricter conditions on the embedded spheres that we call strongly r-shake slice and strongly r shake concordance. We provide infinite families of links that distinguish concordance, shake concordance, and strong shake concordance. Moreover, for r=0 we completely characterize shake slice and shake concordant links in terms of concordance and string link infection. This characterization allows us to prove that the first non-vanishing Milnor mu bar invariants are invariants of shake concordance. We also argue that shake concordance does not imply link homotopy.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"180 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shake slice and shake concordant links\",\"authors\":\"A. Bosman\",\"doi\":\"10.1142/S021821652050087X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We can construct a 4-manifold by attaching 2-handles to a 4-ball with framing r along the components of a link in the boundary of the 4-ball. We define a link as r-shake slice if there exists embedded spheres that represent the generators of the second homology of the 4-manifold. This naturally extends r-shake slice, a generalization of slice that has previously only been studied for knots, to links of more than one component. We also define a relative notion of shake r-concordance for links and versions with stricter conditions on the embedded spheres that we call strongly r-shake slice and strongly r shake concordance. We provide infinite families of links that distinguish concordance, shake concordance, and strong shake concordance. Moreover, for r=0 we completely characterize shake slice and shake concordant links in terms of concordance and string link infection. This characterization allows us to prove that the first non-vanishing Milnor mu bar invariants are invariants of shake concordance. We also argue that shake concordance does not imply link homotopy.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S021821652050087X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S021821652050087X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们可以构造一个四流形,将两个手柄附在一个四球上,沿着四球边界上的一个连杆的组成部分框架r。如果存在表示4流形的第二同调发生器的内嵌球,我们将连杆定义为r-振动片。这自然地将r-shake slice(以前只研究过节的slice的一种推广)扩展到多个组件的链接。我们还定义了在嵌入球上具有更严格条件的连杆和版本的振动r-一致性的相对概念,我们称之为强r-shake slice和强r-shake concordance。我们提供区分和谐,震动和谐和强震动和谐的链接的无限家庭。此外,当r=0时,我们从一致性和串链感染两方面完全表征了摇片和摇链的一致性。这一性质使我们能够证明第一非消失的Milnor bar不变量是振动一致性不变量。我们还论证了振动一致性并不意味着连杆同伦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shake slice and shake concordant links
We can construct a 4-manifold by attaching 2-handles to a 4-ball with framing r along the components of a link in the boundary of the 4-ball. We define a link as r-shake slice if there exists embedded spheres that represent the generators of the second homology of the 4-manifold. This naturally extends r-shake slice, a generalization of slice that has previously only been studied for knots, to links of more than one component. We also define a relative notion of shake r-concordance for links and versions with stricter conditions on the embedded spheres that we call strongly r-shake slice and strongly r shake concordance. We provide infinite families of links that distinguish concordance, shake concordance, and strong shake concordance. Moreover, for r=0 we completely characterize shake slice and shake concordant links in terms of concordance and string link infection. This characterization allows us to prove that the first non-vanishing Milnor mu bar invariants are invariants of shake concordance. We also argue that shake concordance does not imply link homotopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信