{"title":"将亚纯连接扩展到可容许的<s:2>𝒟-modules","authors":"Thomas Bitoun, Andreas Bode","doi":"10.1515/crelle-2021-0025","DOIUrl":null,"url":null,"abstract":"Abstract We investigate when a meromorphic connection on a smooth rigid analytic variety 𝑋 gives rise to a coadmissible D⏜X\\overparen{\\mathcal{D}}_{X}-module, and show that this is always the case when the roots of the corresponding 𝑏-functions are all of positive type. We also use this theory to give an example of an integrable connection on the punctured unit disk whose pushforward is not a coadmissible module.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"178 1","pages":"97 - 118"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extending meromorphic connections to coadmissible ̑𝒟-modules\",\"authors\":\"Thomas Bitoun, Andreas Bode\",\"doi\":\"10.1515/crelle-2021-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate when a meromorphic connection on a smooth rigid analytic variety 𝑋 gives rise to a coadmissible D⏜X\\\\overparen{\\\\mathcal{D}}_{X}-module, and show that this is always the case when the roots of the corresponding 𝑏-functions are all of positive type. We also use this theory to give an example of an integrable connection on the punctured unit disk whose pushforward is not a coadmissible module.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"178 1\",\"pages\":\"97 - 118\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2021-0025\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2021-0025","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extending meromorphic connections to coadmissible ̑𝒟-modules
Abstract We investigate when a meromorphic connection on a smooth rigid analytic variety 𝑋 gives rise to a coadmissible D⏜X\overparen{\mathcal{D}}_{X}-module, and show that this is always the case when the roots of the corresponding 𝑏-functions are all of positive type. We also use this theory to give an example of an integrable connection on the punctured unit disk whose pushforward is not a coadmissible module.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.