{"title":"p53/microRNAs信号在糖尿病肾病病理机制中的作用","authors":"Can Wu, Qiuyue Wang","doi":"10.14800/ICS.1132","DOIUrl":null,"url":null,"abstract":"Recent studies found that high glucose increases the expression of tumor suppressor factor p53. And in the process of diabetic kidney disease (DKD) development p53 involves in regulating multiple signaling pathways. In addition, microRNAs (miRNAs) involve in many diseases pathogenesis. And miRNAs affect DKD development via adjusting multiple mechanism. More importantly, p53/miRNAs signaling may participate in a variety of signaling pathways regulating kidney inflammation and fibrosis to control DKD pathological development. However, the mechanism of p53/miRNAs signaling participate in DKD pathological development is not yet clear. To illuminate the role of p53/miRNAs signaling may inspire a new thinking for elucidating the pathological mechanism of DKD, and provide a new theoretical basis for the prevention and treatment of DKD.","PeriodicalId":13679,"journal":{"name":"Inflammation and cell signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"p53/microRNAs signaling in the pathological mechanism of Diabetic Kidney Disease\",\"authors\":\"Can Wu, Qiuyue Wang\",\"doi\":\"10.14800/ICS.1132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies found that high glucose increases the expression of tumor suppressor factor p53. And in the process of diabetic kidney disease (DKD) development p53 involves in regulating multiple signaling pathways. In addition, microRNAs (miRNAs) involve in many diseases pathogenesis. And miRNAs affect DKD development via adjusting multiple mechanism. More importantly, p53/miRNAs signaling may participate in a variety of signaling pathways regulating kidney inflammation and fibrosis to control DKD pathological development. However, the mechanism of p53/miRNAs signaling participate in DKD pathological development is not yet clear. To illuminate the role of p53/miRNAs signaling may inspire a new thinking for elucidating the pathological mechanism of DKD, and provide a new theoretical basis for the prevention and treatment of DKD.\",\"PeriodicalId\":13679,\"journal\":{\"name\":\"Inflammation and cell signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and cell signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/ICS.1132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and cell signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/ICS.1132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
p53/microRNAs signaling in the pathological mechanism of Diabetic Kidney Disease
Recent studies found that high glucose increases the expression of tumor suppressor factor p53. And in the process of diabetic kidney disease (DKD) development p53 involves in regulating multiple signaling pathways. In addition, microRNAs (miRNAs) involve in many diseases pathogenesis. And miRNAs affect DKD development via adjusting multiple mechanism. More importantly, p53/miRNAs signaling may participate in a variety of signaling pathways regulating kidney inflammation and fibrosis to control DKD pathological development. However, the mechanism of p53/miRNAs signaling participate in DKD pathological development is not yet clear. To illuminate the role of p53/miRNAs signaling may inspire a new thinking for elucidating the pathological mechanism of DKD, and provide a new theoretical basis for the prevention and treatment of DKD.