组织生长的易于处理的数学模型

IF 1.2 4区 数学 Q1 MATHEMATICS
J. Eyles, John King, V. Styles
{"title":"组织生长的易于处理的数学模型","authors":"J. Eyles, John King, V. Styles","doi":"10.4171/ifb/428","DOIUrl":null,"url":null,"abstract":"Using formal asymptotic methods we derive a free boundary problem representing one of the simplest mathematical descriptions of the growth and death of a tumour or other biological tissue. The mathematical model takes the form of a closed interface evolving via forced mean curvature flow (together with a `kinetic under-cooling' regularisation) where the forcing depends on the solution of a PDE that holds in the domain enclosed by the interface. We perform linear stability analysis and derive a diffuse-interface approximation of the model. Finite-element discretisations of two closely related models are presented, together with computational results comparing the approximate solutions.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"8 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A tractable mathematical model for tissue growth\",\"authors\":\"J. Eyles, John King, V. Styles\",\"doi\":\"10.4171/ifb/428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using formal asymptotic methods we derive a free boundary problem representing one of the simplest mathematical descriptions of the growth and death of a tumour or other biological tissue. The mathematical model takes the form of a closed interface evolving via forced mean curvature flow (together with a `kinetic under-cooling' regularisation) where the forcing depends on the solution of a PDE that holds in the domain enclosed by the interface. We perform linear stability analysis and derive a diffuse-interface approximation of the model. Finite-element discretisations of two closely related models are presented, together with computational results comparing the approximate solutions.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/428\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/428","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

使用形式渐近方法,我们导出了一个自由边界问题,表示肿瘤或其他生物组织的生长和死亡的最简单数学描述之一。数学模型采用封闭界面的形式,通过强迫平均曲率流(连同“动力学过冷”正则化)演变,其中强迫取决于在界面包围的域内保持的PDE的解。我们进行了线性稳定性分析,并推导了模型的扩散界面近似。给出了两个密切相关模型的有限元离散,并给出了比较近似解的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tractable mathematical model for tissue growth
Using formal asymptotic methods we derive a free boundary problem representing one of the simplest mathematical descriptions of the growth and death of a tumour or other biological tissue. The mathematical model takes the form of a closed interface evolving via forced mean curvature flow (together with a `kinetic under-cooling' regularisation) where the forcing depends on the solution of a PDE that holds in the domain enclosed by the interface. We perform linear stability analysis and derive a diffuse-interface approximation of the model. Finite-element discretisations of two closely related models are presented, together with computational results comparing the approximate solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信