Xudong Li, Lizhen Wu, Yifeng Niu, Shengde Jia, Bosen Lin
{"title":"基于拓扑相似度的地空系统多目标相关定位","authors":"Xudong Li, Lizhen Wu, Yifeng Niu, Shengde Jia, Bosen Lin","doi":"10.1142/s2737480721500163","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm for solving the multi-target correlation and co-location problem of aerial-ground heterogeneous system is investigated. Aiming at the multi-target correlation problem, the fusion algorithm of visual axis correlation method and improved topological similarity correlation method are adopted in view of large parallax and inconsistent scale between the aerial and ground perspectives. First, the visual axis was preprocessed by the threshold method, so that the sparse targets were initially associated. Then, the improved topological similarity method was used to further associate dense targets with the relative position characteristics between targets. The shortcoming of dense target similarity with small difference was optimized by the improved topological similarity method. For the problem of co-location, combined with the multi-target correlation algorithm in this paper, the triangulation positioning model was used to complete the co-location of multiple targets. In the experimental part, simulation experiments and flight experiments were designed to verify the effectiveness of the algorithm. Experimental results show that the proposed algorithm can effectively achieve multi-target correlation positioning, and that the positioning accuracy is obviously better than other positioning methods.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topological Similarity-Based Multi-Target Correlation Localization for Aerial-Ground Systems\",\"authors\":\"Xudong Li, Lizhen Wu, Yifeng Niu, Shengde Jia, Bosen Lin\",\"doi\":\"10.1142/s2737480721500163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an algorithm for solving the multi-target correlation and co-location problem of aerial-ground heterogeneous system is investigated. Aiming at the multi-target correlation problem, the fusion algorithm of visual axis correlation method and improved topological similarity correlation method are adopted in view of large parallax and inconsistent scale between the aerial and ground perspectives. First, the visual axis was preprocessed by the threshold method, so that the sparse targets were initially associated. Then, the improved topological similarity method was used to further associate dense targets with the relative position characteristics between targets. The shortcoming of dense target similarity with small difference was optimized by the improved topological similarity method. For the problem of co-location, combined with the multi-target correlation algorithm in this paper, the triangulation positioning model was used to complete the co-location of multiple targets. In the experimental part, simulation experiments and flight experiments were designed to verify the effectiveness of the algorithm. Experimental results show that the proposed algorithm can effectively achieve multi-target correlation positioning, and that the positioning accuracy is obviously better than other positioning methods.\",\"PeriodicalId\":6623,\"journal\":{\"name\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2737480721500163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737480721500163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological Similarity-Based Multi-Target Correlation Localization for Aerial-Ground Systems
In this paper, an algorithm for solving the multi-target correlation and co-location problem of aerial-ground heterogeneous system is investigated. Aiming at the multi-target correlation problem, the fusion algorithm of visual axis correlation method and improved topological similarity correlation method are adopted in view of large parallax and inconsistent scale between the aerial and ground perspectives. First, the visual axis was preprocessed by the threshold method, so that the sparse targets were initially associated. Then, the improved topological similarity method was used to further associate dense targets with the relative position characteristics between targets. The shortcoming of dense target similarity with small difference was optimized by the improved topological similarity method. For the problem of co-location, combined with the multi-target correlation algorithm in this paper, the triangulation positioning model was used to complete the co-location of multiple targets. In the experimental part, simulation experiments and flight experiments were designed to verify the effectiveness of the algorithm. Experimental results show that the proposed algorithm can effectively achieve multi-target correlation positioning, and that the positioning accuracy is obviously better than other positioning methods.