用神经分子软件设计增强数字硬件的可进化性:一种生物学驱动的方法

Yo-Hsien Lin, Jong-Chen Chen, Wei-Chang Lee, Chung-Chian Hsu
{"title":"用神经分子软件设计增强数字硬件的可进化性:一种生物学驱动的方法","authors":"Yo-Hsien Lin, Jong-Chen Chen, Wei-Chang Lee, Chung-Chian Hsu","doi":"10.1109/CEC.2010.5586228","DOIUrl":null,"url":null,"abstract":"Organisms have better adaptability that computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. By contrast, computers have fast processing speeds but with limited adaptability. A biologically motivated model (hardware design) that combines intra-and inter-neuronal information processing implemented with digital circuit was proposed. Pattern recognition was the present application domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware (ANM) exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"90 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing digital hardware evolvability with a neuromolecularware design: A biologically-motivated approach\",\"authors\":\"Yo-Hsien Lin, Jong-Chen Chen, Wei-Chang Lee, Chung-Chian Hsu\",\"doi\":\"10.1109/CEC.2010.5586228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organisms have better adaptability that computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. By contrast, computers have fast processing speeds but with limited adaptability. A biologically motivated model (hardware design) that combines intra-and inter-neuronal information processing implemented with digital circuit was proposed. Pattern recognition was the present application domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware (ANM) exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"90 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有机体在处理环境变化或噪音方面比计算机系统有更好的适应性。生物结构固有的紧密的结构-功能关系是对环境变化具有巨大延展性的重要特征。相比之下,计算机的处理速度很快,但适应性有限。提出了一种结合数字电路实现神经元内、神经元间信息处理的生物驱动模型(硬件设计)。模式识别是当前的应用领域。采用数字电路仿真工具Quartus II系统对电路进行了测试。实验结果表明,人工神经分子件(ANM)具有紧密的结构-功能关系,具有多种可进化性增强特征,有利于进化学习,并且能够在噪声环境下持续工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing digital hardware evolvability with a neuromolecularware design: A biologically-motivated approach
Organisms have better adaptability that computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. By contrast, computers have fast processing speeds but with limited adaptability. A biologically motivated model (hardware design) that combines intra-and inter-neuronal information processing implemented with digital circuit was proposed. Pattern recognition was the present application domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware (ANM) exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信