线形图的Kronecker积的代数连通性

IF 0.6 Q4 MATHEMATICS, APPLIED
Shivani Chauhan, A. Satyanarayana Reddy
{"title":"线形图的Kronecker积的代数连通性","authors":"Shivani Chauhan, A. Satyanarayana Reddy","doi":"10.1142/s1793830923500751","DOIUrl":null,"url":null,"abstract":"Let $X$ be a tree with $n$ vertices and $L(X)$ be its line graph. In this work, we completely characterize the trees for which the algebraic connectivity of $L(X)\\times K_m$ is equal to $m-1$, where $\\times$ denotes the Kronecker product. We provide a few necessary and sufficient conditions for $L(X)\\times K_m$ to be Laplacian integral. The algebraic connectivity of $L(X)\\times K_m$, where $X$ is a tree of diameter $4$ and $k$-book graph is discussed.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"24 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic connectivity of Kronecker products of line graphs\",\"authors\":\"Shivani Chauhan, A. Satyanarayana Reddy\",\"doi\":\"10.1142/s1793830923500751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a tree with $n$ vertices and $L(X)$ be its line graph. In this work, we completely characterize the trees for which the algebraic connectivity of $L(X)\\\\times K_m$ is equal to $m-1$, where $\\\\times$ denotes the Kronecker product. We provide a few necessary and sufficient conditions for $L(X)\\\\times K_m$ to be Laplacian integral. The algebraic connectivity of $L(X)\\\\times K_m$, where $X$ is a tree of diameter $4$ and $k$-book graph is discussed.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设$X$是一棵有$n$顶点的树,$L(X)$是它的线形图。在这项工作中,我们完全刻画了L(X)\乘以K_m$的代数连通性等于$m-1$的树,其中$\乘以$表示Kronecker积。给出了L(X) * K_m为拉普拉斯积分的几个充要条件。讨论了L(X)\乘以K_m$的代数连通性,其中$X$是直径$4$的树和$k$-book图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic connectivity of Kronecker products of line graphs
Let $X$ be a tree with $n$ vertices and $L(X)$ be its line graph. In this work, we completely characterize the trees for which the algebraic connectivity of $L(X)\times K_m$ is equal to $m-1$, where $\times$ denotes the Kronecker product. We provide a few necessary and sufficient conditions for $L(X)\times K_m$ to be Laplacian integral. The algebraic connectivity of $L(X)\times K_m$, where $X$ is a tree of diameter $4$ and $k$-book graph is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信