多层薄膜的低温导电性

S. Pawar, S. Kori, R. M. Sangshetty
{"title":"多层薄膜的低温导电性","authors":"S. Pawar, S. Kori, R. M. Sangshetty","doi":"10.12691/IJP-7-4-5","DOIUrl":null,"url":null,"abstract":"By using electron beam gun and thermal evaporation techniques in the vacuum range 6 x10-5mbar (V.R. Technology Bangalore Make). The pure materials of 99.99% purity of Cobalt and aluminium multilayers films were produced on glass substrates at room temperature in the following multilayered [Co10A/AL10A]N where N= 1,3,6,9 and 12 labeled as ( CA1, CA2, CA3, CA4 and CA5). The low temperature (4.2K to 300K) resistance of these samples was measured by using four probe method at UGC-DAE Consortium Indore later resistivity and conductivity calculated and temperature co-efficient of resistance (TCR), residual resistivity ratio (RRR) and activation energy (Ea) were also calculated. The resistivity behavior shown that the resistivity is increased with increasing the n value it means it increased with increasing number of layers. The data belonging to metallic region has been analyzed using the conventional power law’s it is for the first time that a set of multilayered films in the present configurations have been explored for resistivity at low temperature.","PeriodicalId":22540,"journal":{"name":"The International Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Temperature Conductivity Behaviour for Multilayered Thin Films\",\"authors\":\"S. Pawar, S. Kori, R. M. Sangshetty\",\"doi\":\"10.12691/IJP-7-4-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using electron beam gun and thermal evaporation techniques in the vacuum range 6 x10-5mbar (V.R. Technology Bangalore Make). The pure materials of 99.99% purity of Cobalt and aluminium multilayers films were produced on glass substrates at room temperature in the following multilayered [Co10A/AL10A]N where N= 1,3,6,9 and 12 labeled as ( CA1, CA2, CA3, CA4 and CA5). The low temperature (4.2K to 300K) resistance of these samples was measured by using four probe method at UGC-DAE Consortium Indore later resistivity and conductivity calculated and temperature co-efficient of resistance (TCR), residual resistivity ratio (RRR) and activation energy (Ea) were also calculated. The resistivity behavior shown that the resistivity is increased with increasing the n value it means it increased with increasing number of layers. The data belonging to metallic region has been analyzed using the conventional power law’s it is for the first time that a set of multilayered films in the present configurations have been explored for resistivity at low temperature.\",\"PeriodicalId\":22540,\"journal\":{\"name\":\"The International Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/IJP-7-4-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/IJP-7-4-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用电子束枪和热蒸发技术在真空范围6 × 10-5mbar (V.R.技术班加罗尔制造)。在室温下,在以下多层[Co10A/AL10A]N (N= 1,3,6,9和12,标记为(CA1, CA2, CA3, CA4和CA5)中,在玻璃衬底上制备纯度为99.99%的钴和铝多层膜纯材料。采用四探针法测量了样品的低温(4.2K ~ 300K)电阻,计算了后期电阻率和电导率,并计算了电阻温度系数(TCR)、剩余电阻率(RRR)和活化能(Ea)。电阻率随n值的增大而增大,即随层数的增加而增大。本文用常规幂律法对金属区数据进行了分析,首次探索了一组具有这种结构的多层薄膜在低温下的电阻率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Temperature Conductivity Behaviour for Multilayered Thin Films
By using electron beam gun and thermal evaporation techniques in the vacuum range 6 x10-5mbar (V.R. Technology Bangalore Make). The pure materials of 99.99% purity of Cobalt and aluminium multilayers films were produced on glass substrates at room temperature in the following multilayered [Co10A/AL10A]N where N= 1,3,6,9 and 12 labeled as ( CA1, CA2, CA3, CA4 and CA5). The low temperature (4.2K to 300K) resistance of these samples was measured by using four probe method at UGC-DAE Consortium Indore later resistivity and conductivity calculated and temperature co-efficient of resistance (TCR), residual resistivity ratio (RRR) and activation energy (Ea) were also calculated. The resistivity behavior shown that the resistivity is increased with increasing the n value it means it increased with increasing number of layers. The data belonging to metallic region has been analyzed using the conventional power law’s it is for the first time that a set of multilayered films in the present configurations have been explored for resistivity at low temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信