{"title":"二重积分的若干不等式及其在培养公式中的应用","authors":"S. Erden, M. Sarıkaya","doi":"10.2478/ausm-2019-0021","DOIUrl":null,"url":null,"abstract":"Abstract We establish two Ostrowski type inequalities for double integrals of second order partial derivable functions which are bounded. Then, we deduce some inequalities of Hermite-Hadamard type for double integrals of functions whose partial derivatives in absolute value are convex on the co-ordinates on rectangle from the plane. Finally, some applications in Numerical Analysis in connection with cubature formula are given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some inequalities for double integrals and applications for cubature formula\",\"authors\":\"S. Erden, M. Sarıkaya\",\"doi\":\"10.2478/ausm-2019-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish two Ostrowski type inequalities for double integrals of second order partial derivable functions which are bounded. Then, we deduce some inequalities of Hermite-Hadamard type for double integrals of functions whose partial derivatives in absolute value are convex on the co-ordinates on rectangle from the plane. Finally, some applications in Numerical Analysis in connection with cubature formula are given.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2019-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some inequalities for double integrals and applications for cubature formula
Abstract We establish two Ostrowski type inequalities for double integrals of second order partial derivable functions which are bounded. Then, we deduce some inequalities of Hermite-Hadamard type for double integrals of functions whose partial derivatives in absolute value are convex on the co-ordinates on rectangle from the plane. Finally, some applications in Numerical Analysis in connection with cubature formula are given.