{"title":"有向图的非线性拉普拉斯及其在网络分析中的应用","authors":"Yuichi Yoshida","doi":"10.1145/2835776.2835785","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new Markov operator associated with a digraph, which we refer to as a nonlinear Laplacian. Unlike previous Laplacians for digraphs, the nonlinear Laplacian does not rely on the stationary distribution of the random walk process and is well defined on digraphs that are not strongly connected. We show that the nonlinear Laplacian has nontrivial eigenvalues and give a Cheeger-like inequality, which relates the conductance of a digraph and the smallest non-zero eigenvalue of its nonlinear Laplacian. Finally, we apply the nonlinear Laplacian to the analysis of real-world networks and obtain encouraging results.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Nonlinear Laplacian for Digraphs and its Applications to Network Analysis\",\"authors\":\"Yuichi Yoshida\",\"doi\":\"10.1145/2835776.2835785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a new Markov operator associated with a digraph, which we refer to as a nonlinear Laplacian. Unlike previous Laplacians for digraphs, the nonlinear Laplacian does not rely on the stationary distribution of the random walk process and is well defined on digraphs that are not strongly connected. We show that the nonlinear Laplacian has nontrivial eigenvalues and give a Cheeger-like inequality, which relates the conductance of a digraph and the smallest non-zero eigenvalue of its nonlinear Laplacian. Finally, we apply the nonlinear Laplacian to the analysis of real-world networks and obtain encouraging results.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Laplacian for Digraphs and its Applications to Network Analysis
In this work, we introduce a new Markov operator associated with a digraph, which we refer to as a nonlinear Laplacian. Unlike previous Laplacians for digraphs, the nonlinear Laplacian does not rely on the stationary distribution of the random walk process and is well defined on digraphs that are not strongly connected. We show that the nonlinear Laplacian has nontrivial eigenvalues and give a Cheeger-like inequality, which relates the conductance of a digraph and the smallest non-zero eigenvalue of its nonlinear Laplacian. Finally, we apply the nonlinear Laplacian to the analysis of real-world networks and obtain encouraging results.