Warfield型有限生成混合模块

P. Zanardo
{"title":"Warfield型有限生成混合模块","authors":"P. Zanardo","doi":"10.4171/rsmup/71","DOIUrl":null,"url":null,"abstract":"Let R be a local one-dimensional domain, with maximal ideal M, which is not a valuation domain. We investigate the class of the finitely generated mixed R-modules of Warfield type, so called since their construction goes back to R. B. Warfield. We prove that these R-modules have local endomorphism rings, hence they are indecomposable. We examine the torsion part t(M) of a Warfield type module M , investigating the natural property t(M) ⊂ MM . This property is related to b/a being integral over R, where a and b are elements of R that define M . We also investigate M/t(M) and determine its minimum number of generators. Mathematics Subject Classification (2010). 13G05, 13A15, 13A17.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"23 1","pages":"289-302"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finitely generated mixed modules of Warfield type\",\"authors\":\"P. Zanardo\",\"doi\":\"10.4171/rsmup/71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a local one-dimensional domain, with maximal ideal M, which is not a valuation domain. We investigate the class of the finitely generated mixed R-modules of Warfield type, so called since their construction goes back to R. B. Warfield. We prove that these R-modules have local endomorphism rings, hence they are indecomposable. We examine the torsion part t(M) of a Warfield type module M , investigating the natural property t(M) ⊂ MM . This property is related to b/a being integral over R, where a and b are elements of R that define M . We also investigate M/t(M) and determine its minimum number of generators. Mathematics Subject Classification (2010). 13G05, 13A15, 13A17.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"23 1\",\"pages\":\"289-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个局部一维定义域,具有极大理想M,它不是一个赋值定义域。我们研究了一类有限生成的混合r -模的Warfield型,因为它们的构造可以追溯到r.b. Warfield。我们证明了这些r模具有局部自同态环,因此它们是不可分解的。我们研究Warfield型模M的扭转部分t(M),研究其自然性质t(M)∧MM。这个性质与b/a对R积分有关,其中a和b是R中定义M的元素。我们还研究了M/t(M),并确定了其最小发电机数量。数学学科分类(2010)。13g05, 13a15, 13a17。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finitely generated mixed modules of Warfield type
Let R be a local one-dimensional domain, with maximal ideal M, which is not a valuation domain. We investigate the class of the finitely generated mixed R-modules of Warfield type, so called since their construction goes back to R. B. Warfield. We prove that these R-modules have local endomorphism rings, hence they are indecomposable. We examine the torsion part t(M) of a Warfield type module M , investigating the natural property t(M) ⊂ MM . This property is related to b/a being integral over R, where a and b are elements of R that define M . We also investigate M/t(M) and determine its minimum number of generators. Mathematics Subject Classification (2010). 13G05, 13A15, 13A17.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信