反切束上的超级佐佐木度规

A. Bruce
{"title":"反切束上的超级佐佐木度规","authors":"A. Bruce","doi":"10.1142/S0219887820501224","DOIUrl":null,"url":null,"abstract":"We show how to lift a Riemannian metric and almost symplectic form on a manifold to a Riemannian structure on a canonically associated supermanifold known as the antitangent or shifted tangent bundle. We view this construction as a generalisation of Sasaki's construction of a Riemannian metric on the tangent bundle of a Riemannian manifold.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The super-Sasaki metric on the antitangent bundle\",\"authors\":\"A. Bruce\",\"doi\":\"10.1142/S0219887820501224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how to lift a Riemannian metric and almost symplectic form on a manifold to a Riemannian structure on a canonically associated supermanifold known as the antitangent or shifted tangent bundle. We view this construction as a generalisation of Sasaki's construction of a Riemannian metric on the tangent bundle of a Riemannian manifold.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219887820501224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219887820501224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了如何将流形上的黎曼度规和几乎辛形式提升到正则相关的超流形上的黎曼结构,称为反切或移位的切束。我们把这个构造看作是Sasaki在黎曼流形的切束上黎曼度规构造的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The super-Sasaki metric on the antitangent bundle
We show how to lift a Riemannian metric and almost symplectic form on a manifold to a Riemannian structure on a canonically associated supermanifold known as the antitangent or shifted tangent bundle. We view this construction as a generalisation of Sasaki's construction of a Riemannian metric on the tangent bundle of a Riemannian manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信