{"title":"反切束上的超级佐佐木度规","authors":"A. Bruce","doi":"10.1142/S0219887820501224","DOIUrl":null,"url":null,"abstract":"We show how to lift a Riemannian metric and almost symplectic form on a manifold to a Riemannian structure on a canonically associated supermanifold known as the antitangent or shifted tangent bundle. We view this construction as a generalisation of Sasaki's construction of a Riemannian metric on the tangent bundle of a Riemannian manifold.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The super-Sasaki metric on the antitangent bundle\",\"authors\":\"A. Bruce\",\"doi\":\"10.1142/S0219887820501224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how to lift a Riemannian metric and almost symplectic form on a manifold to a Riemannian structure on a canonically associated supermanifold known as the antitangent or shifted tangent bundle. We view this construction as a generalisation of Sasaki's construction of a Riemannian metric on the tangent bundle of a Riemannian manifold.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219887820501224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219887820501224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show how to lift a Riemannian metric and almost symplectic form on a manifold to a Riemannian structure on a canonically associated supermanifold known as the antitangent or shifted tangent bundle. We view this construction as a generalisation of Sasaki's construction of a Riemannian metric on the tangent bundle of a Riemannian manifold.