智能电表数据分析

Xiufeng Liu, Lukasz Golab, W. Golab, I. Ilyas, Shichao Jin
{"title":"智能电表数据分析","authors":"Xiufeng Liu, Lukasz Golab, W. Golab, I. Ilyas, Shichao Jin","doi":"10.1145/3004295","DOIUrl":null,"url":null,"abstract":"Smart electricity meters have been replacing conventional meters worldwide, enabling automated collection of fine-grained (e.g., every 15 minutes or hourly) consumption data. A variety of smart meter analytics algorithms and applications have been proposed, mainly in the smart grid literature. However, the focus has been on what can be done with the data rather than how to do it efficiently. In this article, we examine smart meter analytics from a software performance perspective. First, we design a performance benchmark that includes common smart meter analytics tasks. These include offline feature extraction and model building as well as a framework for online anomaly detection that we propose. Second, since obtaining real smart meter data is difficult due to privacy issues, we present an algorithm for generating large realistic datasets from a small seed of real data. Third, we implement the proposed benchmark using five representative platforms: a traditional numeric computing platform (Matlab), a relational DBMS with a built-in machine learning toolkit (PostgreSQL/MADlib), a main-memory column store (“System C”), and two distributed data processing platforms (Hive and Spark/Spark Streaming). We compare the five platforms in terms of application development effort and performance on a multicore machine as well as a cluster of 16 commodity servers.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"1 1","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Smart Meter Data Analytics\",\"authors\":\"Xiufeng Liu, Lukasz Golab, W. Golab, I. Ilyas, Shichao Jin\",\"doi\":\"10.1145/3004295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart electricity meters have been replacing conventional meters worldwide, enabling automated collection of fine-grained (e.g., every 15 minutes or hourly) consumption data. A variety of smart meter analytics algorithms and applications have been proposed, mainly in the smart grid literature. However, the focus has been on what can be done with the data rather than how to do it efficiently. In this article, we examine smart meter analytics from a software performance perspective. First, we design a performance benchmark that includes common smart meter analytics tasks. These include offline feature extraction and model building as well as a framework for online anomaly detection that we propose. Second, since obtaining real smart meter data is difficult due to privacy issues, we present an algorithm for generating large realistic datasets from a small seed of real data. Third, we implement the proposed benchmark using five representative platforms: a traditional numeric computing platform (Matlab), a relational DBMS with a built-in machine learning toolkit (PostgreSQL/MADlib), a main-memory column store (“System C”), and two distributed data processing platforms (Hive and Spark/Spark Streaming). We compare the five platforms in terms of application development effort and performance on a multicore machine as well as a cluster of 16 commodity servers.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"1 1\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3004295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3004295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

智能电表已经在全球范围内取代了传统电表,实现了细粒度(例如每15分钟或每小时)消费数据的自动收集。各种智能电表分析算法和应用已经被提出,主要是在智能电网文献中。然而,人们关注的焦点是如何处理这些数据,而不是如何有效地处理这些数据。在本文中,我们将从软件性能的角度研究智能电表分析。首先,我们设计了一个性能基准,其中包括常见的智能电表分析任务。其中包括离线特征提取和模型构建,以及我们提出的在线异常检测框架。其次,由于隐私问题难以获得真实的智能电表数据,我们提出了一种从少量真实数据种子生成大型真实数据集的算法。第三,我们使用五个代表性平台实现了所提出的基准测试:一个传统的数值计算平台(Matlab),一个内置机器学习工具包的关系DBMS (PostgreSQL/MADlib),一个主存列存储(“System C”),以及两个分布式数据处理平台(Hive和Spark/Spark Streaming)。我们比较了这五种平台在多核机器和由16台商品服务器组成的集群上的应用程序开发工作和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Meter Data Analytics
Smart electricity meters have been replacing conventional meters worldwide, enabling automated collection of fine-grained (e.g., every 15 minutes or hourly) consumption data. A variety of smart meter analytics algorithms and applications have been proposed, mainly in the smart grid literature. However, the focus has been on what can be done with the data rather than how to do it efficiently. In this article, we examine smart meter analytics from a software performance perspective. First, we design a performance benchmark that includes common smart meter analytics tasks. These include offline feature extraction and model building as well as a framework for online anomaly detection that we propose. Second, since obtaining real smart meter data is difficult due to privacy issues, we present an algorithm for generating large realistic datasets from a small seed of real data. Third, we implement the proposed benchmark using five representative platforms: a traditional numeric computing platform (Matlab), a relational DBMS with a built-in machine learning toolkit (PostgreSQL/MADlib), a main-memory column store (“System C”), and two distributed data processing platforms (Hive and Spark/Spark Streaming). We compare the five platforms in terms of application development effort and performance on a multicore machine as well as a cluster of 16 commodity servers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信