A. Chen, Yan Bai, Shi-Bin Wang, Yuangang Liu, Z. Chen
{"title":"通过研究促炎细胞因子mRNA表达评价聚l -鸟氨酸包被海藻酸盐微胶囊的分子生物相容性","authors":"A. Chen, Yan Bai, Shi-Bin Wang, Yuangang Liu, Z. Chen","doi":"10.4028/www.scientific.net/JBBTE.14.53","DOIUrl":null,"url":null,"abstract":"Following a polyelectrolytical complex reaction, the poly-L-ornithine (PLO)-alginate microcapsules were prepared by coating PLO on calcium alginate beads which were produced by a high-voltage electrostatic droplet generator. The biocompatibility of the microcapsules at the molecular level was evaluated through investigating the mRNA expression of pro-inflammatory cytokines; that is, the effect of the PLO coating of alginate beads on the mRNA expression of TNF-α, IL-1β, and IL-6 were measured using the RT-PCR method. The resulting PLO-coated alginate microcapsules have a smooth surface with a mean diameter of 309µm. The molecular biocompatibility studies show that coating microcapsules with PLO has no significant effect on the biocompatibility of alginate microcapsules (p>0.05), and both alginate microcapsules and PLO-coated microcapsules are significantly different from the positive control (p<0.05); however, both are also capable of causing an inflammatory response at a molecular level since both are significantly different from the blank control (p<0.05). Furthermore, with the increase in concentration of microcapsules or co-cultured time, part of the mRNA expression of cytokines is significantly increased. The results also demonstrate that the method used in this study, co-incubating the microcapsules with macrophages and measuring the mRNA expression of cytokines by RT-PCR, may be a useful method for evaluating the biocompatibility of coating materials of microcapsules.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"5 1","pages":"53 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Molecular Biocompatibility Evaluation of Poly-L-Ornithine-Coated Alginate Microcapsules by Investigating mRNA Expression of Pro-Inflammatory Cytokines\",\"authors\":\"A. Chen, Yan Bai, Shi-Bin Wang, Yuangang Liu, Z. Chen\",\"doi\":\"10.4028/www.scientific.net/JBBTE.14.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following a polyelectrolytical complex reaction, the poly-L-ornithine (PLO)-alginate microcapsules were prepared by coating PLO on calcium alginate beads which were produced by a high-voltage electrostatic droplet generator. The biocompatibility of the microcapsules at the molecular level was evaluated through investigating the mRNA expression of pro-inflammatory cytokines; that is, the effect of the PLO coating of alginate beads on the mRNA expression of TNF-α, IL-1β, and IL-6 were measured using the RT-PCR method. The resulting PLO-coated alginate microcapsules have a smooth surface with a mean diameter of 309µm. The molecular biocompatibility studies show that coating microcapsules with PLO has no significant effect on the biocompatibility of alginate microcapsules (p>0.05), and both alginate microcapsules and PLO-coated microcapsules are significantly different from the positive control (p<0.05); however, both are also capable of causing an inflammatory response at a molecular level since both are significantly different from the blank control (p<0.05). Furthermore, with the increase in concentration of microcapsules or co-cultured time, part of the mRNA expression of cytokines is significantly increased. The results also demonstrate that the method used in this study, co-incubating the microcapsules with macrophages and measuring the mRNA expression of cytokines by RT-PCR, may be a useful method for evaluating the biocompatibility of coating materials of microcapsules.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"5 1\",\"pages\":\"53 - 64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.14.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.14.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Biocompatibility Evaluation of Poly-L-Ornithine-Coated Alginate Microcapsules by Investigating mRNA Expression of Pro-Inflammatory Cytokines
Following a polyelectrolytical complex reaction, the poly-L-ornithine (PLO)-alginate microcapsules were prepared by coating PLO on calcium alginate beads which were produced by a high-voltage electrostatic droplet generator. The biocompatibility of the microcapsules at the molecular level was evaluated through investigating the mRNA expression of pro-inflammatory cytokines; that is, the effect of the PLO coating of alginate beads on the mRNA expression of TNF-α, IL-1β, and IL-6 were measured using the RT-PCR method. The resulting PLO-coated alginate microcapsules have a smooth surface with a mean diameter of 309µm. The molecular biocompatibility studies show that coating microcapsules with PLO has no significant effect on the biocompatibility of alginate microcapsules (p>0.05), and both alginate microcapsules and PLO-coated microcapsules are significantly different from the positive control (p<0.05); however, both are also capable of causing an inflammatory response at a molecular level since both are significantly different from the blank control (p<0.05). Furthermore, with the increase in concentration of microcapsules or co-cultured time, part of the mRNA expression of cytokines is significantly increased. The results also demonstrate that the method used in this study, co-incubating the microcapsules with macrophages and measuring the mRNA expression of cytokines by RT-PCR, may be a useful method for evaluating the biocompatibility of coating materials of microcapsules.