基于增量多数学习的网络流量异常检测

Shin-Ying Huang, Fang Yu, R. Tsaih, Yennun Huang
{"title":"基于增量多数学习的网络流量异常检测","authors":"Shin-Ying Huang, Fang Yu, R. Tsaih, Yennun Huang","doi":"10.1109/IJCNN.2015.7280573","DOIUrl":null,"url":null,"abstract":"Detecting anomaly behavior in large network traffic data has presented a great challenge in designing effective intrusion detection systems. We propose an adaptive model to learn majority patterns under a dynamic changing environment. We first propose unsupervised learning on data abstraction to extract essential features of samples. We then adopt incremental majority learning with iterative evolutions on fitting envelopes to characterize the majority of samples within moving windows. A network traffic sample is considered an anomaly if its abstract feature falls on the outside of the fitting envelope. We justify the effectiveness of the presented approach against 150000+ traffic samples from the NSL-KDD dataset in training and testing, demonstrating positive promise in detecting network attacks by identifying samples that have abnormal features.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"26 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Network-traffic anomaly detection with incremental majority learning\",\"authors\":\"Shin-Ying Huang, Fang Yu, R. Tsaih, Yennun Huang\",\"doi\":\"10.1109/IJCNN.2015.7280573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting anomaly behavior in large network traffic data has presented a great challenge in designing effective intrusion detection systems. We propose an adaptive model to learn majority patterns under a dynamic changing environment. We first propose unsupervised learning on data abstraction to extract essential features of samples. We then adopt incremental majority learning with iterative evolutions on fitting envelopes to characterize the majority of samples within moving windows. A network traffic sample is considered an anomaly if its abstract feature falls on the outside of the fitting envelope. We justify the effectiveness of the presented approach against 150000+ traffic samples from the NSL-KDD dataset in training and testing, demonstrating positive promise in detecting network attacks by identifying samples that have abnormal features.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"26 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在大型网络流量数据中检测异常行为对设计有效的入侵检测系统提出了很大的挑战。我们提出了一个自适应模型来学习动态变化环境下的大多数模式。我们首先提出了数据抽象的无监督学习,以提取样本的基本特征。然后,我们采用增量多数学习和拟合包络的迭代进化来表征移动窗口内的大多数样本。如果网络流量样本的抽象特征落在拟合包络的外部,则认为它是异常的。我们在训练和测试中对来自NSL-KDD数据集的150000多个流量样本证明了所提出方法的有效性,通过识别具有异常特征的样本来检测网络攻击,展示了积极的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network-traffic anomaly detection with incremental majority learning
Detecting anomaly behavior in large network traffic data has presented a great challenge in designing effective intrusion detection systems. We propose an adaptive model to learn majority patterns under a dynamic changing environment. We first propose unsupervised learning on data abstraction to extract essential features of samples. We then adopt incremental majority learning with iterative evolutions on fitting envelopes to characterize the majority of samples within moving windows. A network traffic sample is considered an anomaly if its abstract feature falls on the outside of the fitting envelope. We justify the effectiveness of the presented approach against 150000+ traffic samples from the NSL-KDD dataset in training and testing, demonstrating positive promise in detecting network attacks by identifying samples that have abnormal features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信