图匹配的离散禁忌搜索

Kamil Adamczewski, Yumin Suh, Kyoung Mu Lee
{"title":"图匹配的离散禁忌搜索","authors":"Kamil Adamczewski, Yumin Suh, Kyoung Mu Lee","doi":"10.1109/ICCV.2015.21","DOIUrl":null,"url":null,"abstract":"Graph matching is a fundamental problem in computer vision. In this paper, we propose a novel graph matching algorithm based on tabu search [13]. The proposed method solves graph matching problem by casting it into an equivalent weighted maximum clique problem of the corresponding association graph, which we further penalize through introducing negative weights. Subsequent tabu search optimization allows for overcoming the convention of using positive weights. The method's distinct feature is that it utilizes the history of search to make more strategic decisions while looking for the optimal solution, thus effectively escaping local optima and in practice achieving superior results. The proposed method, unlike the existing algorithms, enables direct optimization in the original discrete space while encouraging rather than artificially enforcing hard one-to-one constraint, thus resulting in better solution. The experiments demonstrate the robustness of the algorithm in a variety of settings, presenting the state-of-the-art results. The code is available at http://cv.snu.ac.kr/research/~DTSGM/.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"83 1","pages":"109-117"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Discrete Tabu Search for Graph Matching\",\"authors\":\"Kamil Adamczewski, Yumin Suh, Kyoung Mu Lee\",\"doi\":\"10.1109/ICCV.2015.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph matching is a fundamental problem in computer vision. In this paper, we propose a novel graph matching algorithm based on tabu search [13]. The proposed method solves graph matching problem by casting it into an equivalent weighted maximum clique problem of the corresponding association graph, which we further penalize through introducing negative weights. Subsequent tabu search optimization allows for overcoming the convention of using positive weights. The method's distinct feature is that it utilizes the history of search to make more strategic decisions while looking for the optimal solution, thus effectively escaping local optima and in practice achieving superior results. The proposed method, unlike the existing algorithms, enables direct optimization in the original discrete space while encouraging rather than artificially enforcing hard one-to-one constraint, thus resulting in better solution. The experiments demonstrate the robustness of the algorithm in a variety of settings, presenting the state-of-the-art results. The code is available at http://cv.snu.ac.kr/research/~DTSGM/.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"83 1\",\"pages\":\"109-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

图匹配是计算机视觉中的一个基本问题。在本文中,我们提出了一种新的基于禁忌搜索的图匹配算法[13]。该方法通过将图匹配问题转化为对应关联图的等价加权最大团问题来解决图匹配问题,并通过引入负权对其进行惩罚。随后的禁忌搜索优化允许克服使用正权重的惯例。该方法的显著特点是在寻找最优解的同时,利用搜索历史进行更多的战略性决策,从而有效地避免了局部最优,在实践中获得了更优的结果。与现有算法不同的是,该方法可以在原始离散空间中直接优化,同时鼓励而不是人为地强加硬一对一约束,从而产生更好的解。实验证明了该算法在各种设置下的鲁棒性,给出了最先进的结果。代码可在http://cv.snu.ac.kr/research/~DTSGM/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Tabu Search for Graph Matching
Graph matching is a fundamental problem in computer vision. In this paper, we propose a novel graph matching algorithm based on tabu search [13]. The proposed method solves graph matching problem by casting it into an equivalent weighted maximum clique problem of the corresponding association graph, which we further penalize through introducing negative weights. Subsequent tabu search optimization allows for overcoming the convention of using positive weights. The method's distinct feature is that it utilizes the history of search to make more strategic decisions while looking for the optimal solution, thus effectively escaping local optima and in practice achieving superior results. The proposed method, unlike the existing algorithms, enables direct optimization in the original discrete space while encouraging rather than artificially enforcing hard one-to-one constraint, thus resulting in better solution. The experiments demonstrate the robustness of the algorithm in a variety of settings, presenting the state-of-the-art results. The code is available at http://cv.snu.ac.kr/research/~DTSGM/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信