超世界线中的粒子和BRST

IF 0.5 Q3 MATHEMATICS
E. Boffo
{"title":"超世界线中的粒子和BRST","authors":"E. Boffo","doi":"10.5817/am2022-5-259","DOIUrl":null,"url":null,"abstract":"In this short note we discuss 𝑁 -supersymmetric worldlines of relativistic massless particles and review the known result that physical spin- 𝑁 / 2 fields are in the first BRST cohomology group. For 𝑁 = 1 , 2 , 4, emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"58 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particles in the superworldline and BRST\",\"authors\":\"E. Boffo\",\"doi\":\"10.5817/am2022-5-259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note we discuss 𝑁 -supersymmetric worldlines of relativistic massless particles and review the known result that physical spin- 𝑁 / 2 fields are in the first BRST cohomology group. For 𝑁 = 1 , 2 , 4, emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-5-259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-5-259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇简短的文章中,我们讨论了相对论性无质量粒子的抛掷-超对称世界线,并回顾了已知的物理自旋-抛掷/抛掷场在第一个BRST上同群中的结果。对于二进制操作(即二进制操作)= 1,2,4,重点是给出了BRST微分的特定变形,这些变形实现了规范理论的协变导数或粒子所看到的目标空间中的度量连接。最后,我们讨论了在背景中加入雷蒙-雷蒙通量的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particles in the superworldline and BRST
In this short note we discuss 𝑁 -supersymmetric worldlines of relativistic massless particles and review the known result that physical spin- 𝑁 / 2 fields are in the first BRST cohomology group. For 𝑁 = 1 , 2 , 4, emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信