Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao
{"title":"关于静止和均匀旋转旋涡片的备注:柔性结果","authors":"Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao","doi":"10.1098/rsta.2021.0045","DOIUrl":null,"url":null,"abstract":"In this paper, we construct new, uniformly rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov–Schmidt reduction and a second-order expansion of the reduced system. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Remarks on stationary and uniformly rotating vortex sheets: flexibility results\",\"authors\":\"Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao\",\"doi\":\"10.1098/rsta.2021.0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct new, uniformly rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov–Schmidt reduction and a second-order expansion of the reduced system. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.\",\"PeriodicalId\":20020,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remarks on stationary and uniformly rotating vortex sheets: flexibility results
In this paper, we construct new, uniformly rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov–Schmidt reduction and a second-order expansion of the reduced system. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.