关于静止和均匀旋转旋涡片的备注:柔性结果

Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao
{"title":"关于静止和均匀旋转旋涡片的备注:柔性结果","authors":"Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao","doi":"10.1098/rsta.2021.0045","DOIUrl":null,"url":null,"abstract":"In this paper, we construct new, uniformly rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov–Schmidt reduction and a second-order expansion of the reduced system. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Remarks on stationary and uniformly rotating vortex sheets: flexibility results\",\"authors\":\"Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao\",\"doi\":\"10.1098/rsta.2021.0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct new, uniformly rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov–Schmidt reduction and a second-order expansion of the reduced system. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.\",\"PeriodicalId\":20020,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文构造了由等涡度幅值圆分叉的涡片方程的新的均匀旋转解。证明是通过Lyapunov-Schmidt约简和约简系统的二阶展开来完成的。本文是主题问题“物理流体动力学中的数学问题(第二部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on stationary and uniformly rotating vortex sheets: flexibility results
In this paper, we construct new, uniformly rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov–Schmidt reduction and a second-order expansion of the reduced system. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信