姿态自引导的多频相对定位

P. Buist, P. Teunissen, G. Giorgi, S. Verhagen
{"title":"姿态自引导的多频相对定位","authors":"P. Buist, P. Teunissen, G. Giorgi, S. Verhagen","doi":"10.1109/PLANS.2010.5507315","DOIUrl":null,"url":null,"abstract":"Normally, dual frequency observations are required for precise relative positioning, but under critical circumstances even with multi-frequency observations a reliable solution might not always be available. We have developed a method to rigorously integrate multiantenna data at individual platforms such that the attitude solution can be used to enhance relative positioning. Aim of the method is to instantaneously fix the ambiguities of the unconstrained baselines between platforms, whereas several epochs of data might be required with existing methods where not all available information is applied. We will analyze single epoch success rates as the most challenging application. The difference in performance for the methods for single epoch solutions, is a good indication of the strength of the underlying models, and therefore the results can also indicate how much a multi-epoch solution would benefit from the integrated approaches. This contribution will show that the new method improves the relative positioning performance, both single and dual frequency, of moving platforms significantly. The probability of correct instantaneous ambiguity resolution can be increased up to 37% for single frequency relative positioning. For dual frequency applications with at least three single frequency and one dual frequency antenna at each platform, an empirical success rate of more than 95% is achievable even with large code noise levels. An additional benefit of the method is an improved robustness and precision of the baseline estimation.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Attitude bootstrapped multi-frequency relative positioning\",\"authors\":\"P. Buist, P. Teunissen, G. Giorgi, S. Verhagen\",\"doi\":\"10.1109/PLANS.2010.5507315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Normally, dual frequency observations are required for precise relative positioning, but under critical circumstances even with multi-frequency observations a reliable solution might not always be available. We have developed a method to rigorously integrate multiantenna data at individual platforms such that the attitude solution can be used to enhance relative positioning. Aim of the method is to instantaneously fix the ambiguities of the unconstrained baselines between platforms, whereas several epochs of data might be required with existing methods where not all available information is applied. We will analyze single epoch success rates as the most challenging application. The difference in performance for the methods for single epoch solutions, is a good indication of the strength of the underlying models, and therefore the results can also indicate how much a multi-epoch solution would benefit from the integrated approaches. This contribution will show that the new method improves the relative positioning performance, both single and dual frequency, of moving platforms significantly. The probability of correct instantaneous ambiguity resolution can be increased up to 37% for single frequency relative positioning. For dual frequency applications with at least three single frequency and one dual frequency antenna at each platform, an empirical success rate of more than 95% is achievable even with large code noise levels. An additional benefit of the method is an improved robustness and precision of the baseline estimation.\",\"PeriodicalId\":94036,\"journal\":{\"name\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2010.5507315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通常情况下,精确的相对定位需要双频观测,但在关键情况下,即使有多频观测,也不一定总能得到可靠的解决办法。我们已经开发了一种方法来严格整合各个平台上的多天线数据,这样就可以使用姿态解来增强相对定位。该方法的目的是立即修复平台之间无约束基线的模糊性,而现有方法可能需要几个时代的数据,而不是应用所有可用信息。我们将作为最具挑战性的应用分析单epoch成功率。单历元解方法的性能差异很好地表明了底层模型的强度,因此结果也可以表明多历元解从集成方法中获益的程度。这一贡献将表明,新方法显著提高了运动平台的相对定位性能,无论是单频还是双频。对于单频相对定位,正确的瞬时歧义分辨概率可提高到37%。对于每个平台至少有三个单频天线和一个双频天线的双频应用,即使在较大的代码噪声水平下,也可以实现95%以上的经验成功率。该方法的另一个优点是提高了基线估计的鲁棒性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attitude bootstrapped multi-frequency relative positioning
Normally, dual frequency observations are required for precise relative positioning, but under critical circumstances even with multi-frequency observations a reliable solution might not always be available. We have developed a method to rigorously integrate multiantenna data at individual platforms such that the attitude solution can be used to enhance relative positioning. Aim of the method is to instantaneously fix the ambiguities of the unconstrained baselines between platforms, whereas several epochs of data might be required with existing methods where not all available information is applied. We will analyze single epoch success rates as the most challenging application. The difference in performance for the methods for single epoch solutions, is a good indication of the strength of the underlying models, and therefore the results can also indicate how much a multi-epoch solution would benefit from the integrated approaches. This contribution will show that the new method improves the relative positioning performance, both single and dual frequency, of moving platforms significantly. The probability of correct instantaneous ambiguity resolution can be increased up to 37% for single frequency relative positioning. For dual frequency applications with at least three single frequency and one dual frequency antenna at each platform, an empirical success rate of more than 95% is achievable even with large code noise levels. An additional benefit of the method is an improved robustness and precision of the baseline estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信