关于Caristi型耦合不动点定理的一些结果

Pub Date : 2022-12-01 DOI:10.2478/ausm-2022-0021
I. Şahin, M. Telci
{"title":"关于Caristi型耦合不动点定理的一些结果","authors":"I. Şahin, M. Telci","doi":"10.2478/ausm-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this work we define the concepts of the coupled orbit and coupled orbitally completeness. After then, using the method of Bollenbacher and Hicks [8], we prove some Caristi type coupled fixed point theorems in coupled orbitally complete metric spaces for a function P : E × E → E. We also give two examples that support our results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on Caristi type coupled fixed point theorems\",\"authors\":\"I. Şahin, M. Telci\",\"doi\":\"10.2478/ausm-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work we define the concepts of the coupled orbit and coupled orbitally completeness. After then, using the method of Bollenbacher and Hicks [8], we prove some Caristi type coupled fixed point theorems in coupled orbitally complete metric spaces for a function P : E × E → E. We also give two examples that support our results.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2022-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文定义了耦合轨道和耦合轨道完备性的概念。然后,利用Bollenbacher和Hicks[8]的方法,证明了函数P: E × E→E在耦合轨道完备度量空间中的一些Caristi型耦合不动点定理,并给出了两个支持我们结果的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some results on Caristi type coupled fixed point theorems
Abstract In this work we define the concepts of the coupled orbit and coupled orbitally completeness. After then, using the method of Bollenbacher and Hicks [8], we prove some Caristi type coupled fixed point theorems in coupled orbitally complete metric spaces for a function P : E × E → E. We also give two examples that support our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信