{"title":"CIGS串联结构顶层电池宽禁带吸收膜β-Cu (In,Ga)3Se5薄膜的制备","authors":"J. Kim, Y. Shin, B. Ahn","doi":"10.1109/PVSC.2010.5614624","DOIUrl":null,"url":null,"abstract":"Polycrystalline Cu<inf>x</inf>(In,Ga)<inf>y</inf>Se<inf>z</inf> films were deposited on Mo coated soda-lime glass substrate by three-stage co-evaporation process. Cu content x can be controlled by deposition times of each stage. The presence of β-Cu(In,Ga)<inf>3</inf>Se<inf>5</inf> phase in films was confirmed by X-ray Diffraction and Auger Electron Spectroscopy when the x decreased below 0.5. The grain size became smaller as the x decreased. The absorption edge moved to shorter wavelength and the optical transmittance of long wavelength noticeably increased in β-Cu(In,Ga)<inf>3</inf>Se<inf>5</inf> system comparing the conventional Cu(In,Ga)Se<inf>2</inf>. Its optical band gap was 1.49eV. The CdS/Cu(In<inf>0.3</inf>Ga<inf>0.7</inf>)<inf>3</inf>Se<inf>5</inf> solar cell showed the efficiency of 8.09% with an active area of 0.44cm<sup>2</sup>. High transmittance and band gap are desirable to be a light absorber for top cell, but further effort is necessary to improve cell efficiency for the top cell application in CIGS tandem solar cells.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"144 1","pages":"003439-003442"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation of β-Cu (In,Ga)3Se5 thin films for wide band gap absorber for top cell in CIGS tandem structure\",\"authors\":\"J. Kim, Y. Shin, B. Ahn\",\"doi\":\"10.1109/PVSC.2010.5614624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polycrystalline Cu<inf>x</inf>(In,Ga)<inf>y</inf>Se<inf>z</inf> films were deposited on Mo coated soda-lime glass substrate by three-stage co-evaporation process. Cu content x can be controlled by deposition times of each stage. The presence of β-Cu(In,Ga)<inf>3</inf>Se<inf>5</inf> phase in films was confirmed by X-ray Diffraction and Auger Electron Spectroscopy when the x decreased below 0.5. The grain size became smaller as the x decreased. The absorption edge moved to shorter wavelength and the optical transmittance of long wavelength noticeably increased in β-Cu(In,Ga)<inf>3</inf>Se<inf>5</inf> system comparing the conventional Cu(In,Ga)Se<inf>2</inf>. Its optical band gap was 1.49eV. The CdS/Cu(In<inf>0.3</inf>Ga<inf>0.7</inf>)<inf>3</inf>Se<inf>5</inf> solar cell showed the efficiency of 8.09% with an active area of 0.44cm<sup>2</sup>. High transmittance and band gap are desirable to be a light absorber for top cell, but further effort is necessary to improve cell efficiency for the top cell application in CIGS tandem solar cells.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"144 1\",\"pages\":\"003439-003442\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5614624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of β-Cu (In,Ga)3Se5 thin films for wide band gap absorber for top cell in CIGS tandem structure
Polycrystalline Cux(In,Ga)ySez films were deposited on Mo coated soda-lime glass substrate by three-stage co-evaporation process. Cu content x can be controlled by deposition times of each stage. The presence of β-Cu(In,Ga)3Se5 phase in films was confirmed by X-ray Diffraction and Auger Electron Spectroscopy when the x decreased below 0.5. The grain size became smaller as the x decreased. The absorption edge moved to shorter wavelength and the optical transmittance of long wavelength noticeably increased in β-Cu(In,Ga)3Se5 system comparing the conventional Cu(In,Ga)Se2. Its optical band gap was 1.49eV. The CdS/Cu(In0.3Ga0.7)3Se5 solar cell showed the efficiency of 8.09% with an active area of 0.44cm2. High transmittance and band gap are desirable to be a light absorber for top cell, but further effort is necessary to improve cell efficiency for the top cell application in CIGS tandem solar cells.