便携式多节点LQCD蒙特卡罗模拟使用OpenACC

C. Bonati, E. Calore, M. D’Elia, M. Mesiti, F. Negro, F. Sanfilippo, S. Schifano, G. Silvi, R. Tripiccione
{"title":"便携式多节点LQCD蒙特卡罗模拟使用OpenACC","authors":"C. Bonati, E. Calore, M. D’Elia, M. Mesiti, F. Negro, F. Sanfilippo, S. Schifano, G. Silvi, R. Tripiccione","doi":"10.1142/S0129183118500109","DOIUrl":null,"url":null,"abstract":"This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Portable multi-node LQCD Monte Carlo simulations using OpenACC\",\"authors\":\"C. Bonati, E. Calore, M. D’Elia, M. Mesiti, F. Negro, F. Sanfilippo, S. Schifano, G. Silvi, R. Tripiccione\",\"doi\":\"10.1142/S0129183118500109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129183118500109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129183118500109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种用于交错费米子的最先进的并行晶格QCD蒙特卡罗代码,旨在跨不同的计算机体系结构(包括gpu和商用cpu)进行移植。可移植性是通过使用OpenACC并行编程模型实现的,该模型用于开发可在多个处理器体系结构上编译的代码。本文重点研究了多计算节点的并行化,使用OpenACC管理节点内的并行性,使用OpenMPI管理节点间的并行性。我们首先讨论可用于最大化性能的可用策略,然后描述代码的选定相关细节,最后度量我们能够实现的性能水平和可伸缩性能。这项工作主要集中在gpu上,它为这个应用程序提供了非常高的性能水平,但也与其他处理器上测量的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portable multi-node LQCD Monte Carlo simulations using OpenACC
This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信