{"title":"带输入约束的微电磁作动器命令整形模型参考控制","authors":"Gerald Eaglin, J. Vaughan","doi":"10.1115/dscc2019-9162","DOIUrl":null,"url":null,"abstract":"\n Model Reference Control is used to force a system to track the response of an assigned reference model, where the reference model is often designed to reflect the desired properties of the system. If a linear reference model is used, Model Reference Control has a linearizing effect for nonlinear plants, allowing it to be cascaded with linear controllers. Model Reference Control has been used to force nonlinear flexible systems to behave linearly such that input shaping can be used to limit residual vibration. However, when a system encounters saturation limits, the vibration limiting property of input shaping is degraded. This paper proposes Model Reference Control with an adaptive input shaping method to account for saturation by modifying the input shaper after saturation has been encountered. Simulations are presented to illustrate the effectiveness of this method in canceling residual vibration for a nonlinear electromagnetic actuator subject to input constraints.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Reference Control With Command Shaping for a Micro-Electromagnetic Actuator With Input Constraints\",\"authors\":\"Gerald Eaglin, J. Vaughan\",\"doi\":\"10.1115/dscc2019-9162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Model Reference Control is used to force a system to track the response of an assigned reference model, where the reference model is often designed to reflect the desired properties of the system. If a linear reference model is used, Model Reference Control has a linearizing effect for nonlinear plants, allowing it to be cascaded with linear controllers. Model Reference Control has been used to force nonlinear flexible systems to behave linearly such that input shaping can be used to limit residual vibration. However, when a system encounters saturation limits, the vibration limiting property of input shaping is degraded. This paper proposes Model Reference Control with an adaptive input shaping method to account for saturation by modifying the input shaper after saturation has been encountered. Simulations are presented to illustrate the effectiveness of this method in canceling residual vibration for a nonlinear electromagnetic actuator subject to input constraints.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Model Reference Control With Command Shaping for a Micro-Electromagnetic Actuator With Input Constraints
Model Reference Control is used to force a system to track the response of an assigned reference model, where the reference model is often designed to reflect the desired properties of the system. If a linear reference model is used, Model Reference Control has a linearizing effect for nonlinear plants, allowing it to be cascaded with linear controllers. Model Reference Control has been used to force nonlinear flexible systems to behave linearly such that input shaping can be used to limit residual vibration. However, when a system encounters saturation limits, the vibration limiting property of input shaping is degraded. This paper proposes Model Reference Control with an adaptive input shaping method to account for saturation by modifying the input shaper after saturation has been encountered. Simulations are presented to illustrate the effectiveness of this method in canceling residual vibration for a nonlinear electromagnetic actuator subject to input constraints.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.