基于吉村图可重构模块的折纸自适应隔振器

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jong-Eun Suh, Jae-Hung Han
{"title":"基于吉村图可重构模块的折纸自适应隔振器","authors":"Jong-Eun Suh, Jae-Hung Han","doi":"10.1177/1045389X231164529","DOIUrl":null,"url":null,"abstract":"In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"3 1","pages":"2157 - 2171"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An origami-based adaptive vibration isolator with Yoshimura-patterned reconfigurable module\",\"authors\":\"Jong-Eun Suh, Jae-Hung Han\",\"doi\":\"10.1177/1045389X231164529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"3 1\",\"pages\":\"2157 - 2171\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X231164529\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231164529","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了自适应隔振器的新概念。所提出的自适应隔离器是基于薄壁吉村图案管,它能够重新配置其形状来调整刚度。该隔振器由多个可重构模块组成;因此,隔振器的传力率可以通过系统地重新配置模块来调整,使其在受振环境中表现出最佳的性能。本文对所提出的自适应隔振器的传力率进行了分析和实验分析。建立了隔振系统的运动动力学方程,分析了隔振系统在不同构型下的传力率。所提出的自适应隔离器的原型是用嵌入式驱动机构进行重构。通过样机的振动试验,验证了该隔振器的性能。分析结果和实验结果都很好地证明了所提出的隔离器概念的自适应特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An origami-based adaptive vibration isolator with Yoshimura-patterned reconfigurable module
In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信