{"title":"基于吉村图可重构模块的折纸自适应隔振器","authors":"Jong-Eun Suh, Jae-Hung Han","doi":"10.1177/1045389X231164529","DOIUrl":null,"url":null,"abstract":"In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"3 1","pages":"2157 - 2171"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An origami-based adaptive vibration isolator with Yoshimura-patterned reconfigurable module\",\"authors\":\"Jong-Eun Suh, Jae-Hung Han\",\"doi\":\"10.1177/1045389X231164529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"3 1\",\"pages\":\"2157 - 2171\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X231164529\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231164529","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An origami-based adaptive vibration isolator with Yoshimura-patterned reconfigurable module
In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.