基于支持向量机的肺癌计算机辅助诊断系统

B. Şekeroğlu, Erkan Emirzade
{"title":"基于支持向量机的肺癌计算机辅助诊断系统","authors":"B. Şekeroğlu, Erkan Emirzade","doi":"10.1117/12.2502010","DOIUrl":null,"url":null,"abstract":"Computer aided diagnosis (CAD) is started to be implemented broadly in the diagnosis and detection of many varieties of abnormalities acquired during various imaging procedures. The main aim of the CAD systems is to increase the accuracy and decrease the time of diagnoses, while the general achievement for CAD systems are to find the place of nodules and to determine the characteristic features of them. As lung cancer is one of the fatal and leading cancer types, there has been plenty of studies for the usage of the CAD systems to detect lung cancer. Yet, the CAD systems need to be developed a lot to identify the different shapes of nodules, lung segmentation and to have higher level of sensitivity, specifity and accuracy. In this paper, Lung Image Database Consortium (LIDC) database is used which comprises of an image set of lung cancer thoracic documented CT scans. After performing image pre-processing, segmentation, feature extraction/selection steps, classification is utilized using Support Vector Machine (SVM) with Gaussian RBF and 97.3% of specificity and 92.0% of sensitivity is achieved which is superior to recently proposed CAD systems.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A computer aided diagnosis system for lung cancer detection using support vector machine\",\"authors\":\"B. Şekeroğlu, Erkan Emirzade\",\"doi\":\"10.1117/12.2502010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer aided diagnosis (CAD) is started to be implemented broadly in the diagnosis and detection of many varieties of abnormalities acquired during various imaging procedures. The main aim of the CAD systems is to increase the accuracy and decrease the time of diagnoses, while the general achievement for CAD systems are to find the place of nodules and to determine the characteristic features of them. As lung cancer is one of the fatal and leading cancer types, there has been plenty of studies for the usage of the CAD systems to detect lung cancer. Yet, the CAD systems need to be developed a lot to identify the different shapes of nodules, lung segmentation and to have higher level of sensitivity, specifity and accuracy. In this paper, Lung Image Database Consortium (LIDC) database is used which comprises of an image set of lung cancer thoracic documented CT scans. After performing image pre-processing, segmentation, feature extraction/selection steps, classification is utilized using Support Vector Machine (SVM) with Gaussian RBF and 97.3% of specificity and 92.0% of sensitivity is achieved which is superior to recently proposed CAD systems.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2502010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2502010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

计算机辅助诊断(CAD)开始广泛应用于诊断和检测各种成像过程中获得的各种异常。CAD系统的主要目的是提高诊断的准确性和减少诊断的时间,而CAD系统的一般成果是找到结节的位置和确定结节的特征。由于肺癌是最致命的主要癌症类型之一,使用CAD系统检测肺癌已经有了大量的研究。然而,为了识别不同形状的结节、进行肺分割,需要进一步开发CAD系统,使其具有更高的灵敏度、特异性和准确性。本文使用肺图像数据库联盟(LIDC)数据库,该数据库由肺癌胸部CT扫描记录的图像集组成。在进行图像预处理、分割、特征提取/选择等步骤后,利用高斯RBF支持向量机(SVM)进行分类,其特异性达到97.3%,灵敏度达到92.0%,优于目前提出的CAD系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computer aided diagnosis system for lung cancer detection using support vector machine
Computer aided diagnosis (CAD) is started to be implemented broadly in the diagnosis and detection of many varieties of abnormalities acquired during various imaging procedures. The main aim of the CAD systems is to increase the accuracy and decrease the time of diagnoses, while the general achievement for CAD systems are to find the place of nodules and to determine the characteristic features of them. As lung cancer is one of the fatal and leading cancer types, there has been plenty of studies for the usage of the CAD systems to detect lung cancer. Yet, the CAD systems need to be developed a lot to identify the different shapes of nodules, lung segmentation and to have higher level of sensitivity, specifity and accuracy. In this paper, Lung Image Database Consortium (LIDC) database is used which comprises of an image set of lung cancer thoracic documented CT scans. After performing image pre-processing, segmentation, feature extraction/selection steps, classification is utilized using Support Vector Machine (SVM) with Gaussian RBF and 97.3% of specificity and 92.0% of sensitivity is achieved which is superior to recently proposed CAD systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信